【題目】某同學(xué)用五點法畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如下表:

0

π

2π

x

0

4

-4

0

1)請將上表數(shù)據(jù)補充完整,填寫在答題卡上相應(yīng)位置,并直接寫出函數(shù)fx)的解析式;

2)將圖象上所有點向左平行移動θ)個單位長度,得到的圖象.圖象的一個對稱中心為,求θ的最小值.

【答案】1)見解析,2.

【解析】

1)由題意,根據(jù)三角函數(shù)“五點法作圖”,確定參數(shù),.即可補全表格數(shù)據(jù).

2)根據(jù)圖像平移法則:左加右減,得到的解析式,令,即可求解參數(shù)值.

1)根據(jù)表中已知數(shù)據(jù),解得,.數(shù)據(jù)補全如下表:

0

π

2π

x

0

4

0

-4

0

且函數(shù)表達(dá)式為.

2)由(1)知,得

因為的對稱中心為,.

,解得,.

由于函數(shù)的圖象關(guān)于點成中心對稱,令

解得,,由可知,當(dāng)時,θ取得最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)拋物線的焦點是雙曲線的右焦點,拋物線的準(zhǔn)線與軸的交點為,若拋物線上存在一點,且,則直線的方程為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為2的等邊△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M為BC的中點.

(I)證明:AM⊥PM ;

(II)求二面角P-AM-D的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在矩形中,,點是線段上靠近點的一個三等分點,點是線段上的一個動點,且.如圖,將沿折起至,使得平面平面.

(1)當(dāng)時,求證:;

(2)是否存在,使得與平面所成的角的正弦值為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖所示,在三棱錐PABC中,PA⊥底面ABCPAAB,∠ABC=60°,∠BCA=90°,點D,E分別在棱PB,PC上,且DEBC.

(1)求證:BC⊥平面PAC

(2)當(dāng)DPB的中點時,求AD與平面PAC所成的角的正弦值;

(3)是否存在點E,使得二面角ADEP為直二面角?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面是菱形,.

(1)證明:

(2)若,,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某小學(xué)隨機抽取100名學(xué)生,將他們的身高(單位:厘米)按照區(qū)間 [ 100 , 110),[ 110 , 120),[ 120 , 130),[130 ,140) , [140 , 150] 進(jìn)行分組,得到頻率分布直方圖(如圖).

)求直方圖中a的值;

)若要從身高在[ 120 , 130),[130 ,140) , [140 , 150] 三組內(nèi)的學(xué)生中,用分層抽樣的方法選取18人參加一項活動,求從身高在[140 150]內(nèi)的學(xué)生中應(yīng)選取的人數(shù);

)這100名學(xué)生的平均身高約為多少厘米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】進(jìn)入12月以來,某地區(qū)為了防止出現(xiàn)重污染天氣,堅持保民生、保藍(lán)天,嚴(yán)格落實機動車限行等一系列管控令,該地區(qū)交通管理部門為了了解市民對單雙號限行的贊同情況,隨機采訪了220名市民,將他們的意見和是否擁有私家車情況進(jìn)行了統(tǒng)計,得到如下的2×2列聯(lián)表:

贊同限行

不贊同限行

合計

沒有私家車

90

20

110

有私家車

70

40

110

合計

160

60

220

1)根據(jù)上面的列聯(lián)表判斷,能否有99%的把握認(rèn)為贊同限行與是否擁有私家車有關(guān);

2)為了解限行之后是否對交通擁堵、環(huán)境污染起到改善作用,從上述調(diào)查的不贊同限行的人員中按分層抽樣抽取6人,再從這6人中隨機抽出2名進(jìn)行電話回訪,求抽到的2人中至少有1沒有私家車人員的概率.

參考公式:K2

PK2≥k

0.10

0.05

0.010

0.005

0.001

k

2.706

3..841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處的切線方程為.

(1)求函數(shù)的解析式;

(2)若關(guān)于的方程恰有兩個不同的實根,求實數(shù)的值;

(3)數(shù)列滿足.

證明:①;

.

查看答案和解析>>

同步練習(xí)冊答案