數(shù)學(xué)公式________β(請(qǐng)用?,?,?填寫)].

?
分析:根據(jù)不等式的性質(zhì)可得α?β,通過舉反例可得由β 不能推出α.
解答:若x1>1 且 x2>1,則可得x1+x2>2 且 x1•x2>1,故α?β.
但由β 不能推出α,如x1=6,時(shí),顯然滿足β,但不滿足α.
故答案為:?.
點(diǎn)評(píng):本題主要考查充分條件、必要條件、充要條件的定義,不等式的性質(zhì)應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列六種圖象變換方法:
(1)圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮短到原來的
1
2

(2)圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)到原來的2倍;
(3)圖象向右平移
π
3
個(gè)單位;
(4)圖象向左平移
π
3
個(gè)單位;
(5)圖象向右平移
3
個(gè)單位;
(6)圖象向左平移
3
個(gè)單位.
請(qǐng)用上述變換中的兩種變換,將函數(shù)y=sinx的圖象變換到函數(shù)y=sin(
x
2
+
π
3
)的圖象,那么這兩種變換正確的標(biāo)號(hào)是
 
(要求按變換先后順序填上一種你認(rèn)為正確的標(biāo)號(hào)即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•陜西)有7位歌手(1至7號(hào))參加一場(chǎng)歌唱比賽,由500名大眾評(píng)委現(xiàn)場(chǎng)投票決定歌手名次,根據(jù)年齡將大眾評(píng)委分為5組,各組的人數(shù)如下:
組別 A B C D E
人數(shù) 50 100 150 150 50
(Ⅰ) 為了調(diào)查評(píng)委對(duì)7位歌手的支持狀況,現(xiàn)用分層抽樣方法從各組中抽取若干評(píng)委,其中從B組中抽取了6人.請(qǐng)將其余各組抽取的人數(shù)填入下表.
組別 A B C D E
人數(shù) 50 100 150 150 50
抽取人數(shù) 6
(Ⅱ) 在(Ⅰ)中,若A,B兩組被抽到的評(píng)委中各有2人支持1號(hào)歌手,現(xiàn)從這兩組被抽到的評(píng)委中分別任選1人,求這2人都支持1號(hào)歌手的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=sin(2x-
π
3
).
(Ⅰ)請(qǐng)用“五點(diǎn)法”畫出函數(shù)f(x)在長(zhǎng)度為一個(gè)周期的閉區(qū)間上的簡(jiǎn)圖(先在所給的表格中填上所需的數(shù)值,再畫圖);
           
           
           
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)當(dāng)x∈[0,
π
2
]時(shí),求函數(shù)f(x)的最大值和最小值及相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在舒城中學(xué)第九屆校園文化節(jié)上共有7位學(xué)生(1至7號(hào))以歌唱節(jié)目參賽,由500名觀眾現(xiàn)場(chǎng)投票選出最喜愛歌手.根據(jù)年齡將觀眾分為五組,各組的人數(shù)如下:
組別 A B C D E
人數(shù) 100 50 150 50 150
(1)為了調(diào)查觀眾對(duì)7位歌手的支持情況,現(xiàn)用分層抽樣方法從各組中抽取若干觀眾,其中從A組抽取了6人,請(qǐng)將其余各組抽取的人數(shù)填入下表.
組別 A B C D E
人數(shù) 100 50 150 50 150
抽取人數(shù) 6
(2)在(1)中,若A,B兩組被抽到的觀眾中各有2人支持1號(hào)歌手,現(xiàn)從這兩組被抽到的評(píng)委中分別任選1人,求這2人都支持1號(hào)歌手的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

探究f(x)=x+
1
x
,x∈(0,+∞)
的最小值,并確定相應(yīng)的x的值,類表如下:
x
1
4
1
3
1
2
1 2 3 4
y
17
4
10
3
5
2
2
5
2
10
3
17
4

請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成下列的問題:
(1)若x1x2=1,則f(x1
 
f(x2)(請(qǐng) 用“>”、“<”或“=”填上);若函數(shù)f(x)=x+
1
x
,(x>0)
在區(qū)間(0,1)上單調(diào)遞減,則在區(qū)間
 
上單調(diào)遞增.
(2)當(dāng)x=
 
時(shí),f(x)=x+
1
x
,(x>0)
的最小值為
 

(3)證明函數(shù)f(x)=x+
1
x
在區(qū)間(1,+∞)上為單調(diào)增函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案