若函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,則

A.            B.           C.           D.

 

【答案】

 解析:函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,

,即,答案應(yīng)選C。

另解1:令得函數(shù)為增函數(shù),同理可得函數(shù)為減函數(shù),則當(dāng)時符合題意,即,答案應(yīng)選C。

另解2:由題意可知當(dāng)時,函數(shù)取得極大值,則,即,即,結(jié)合選擇項即可得答案應(yīng)選C。

另解3:由題意可知當(dāng)時,函數(shù)取得最大值,

,結(jié)合選擇項即可得答案應(yīng)選C。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省皖南八校高三第一次聯(lián)考文科數(shù)學(xué)試卷解析版 題型:解答題

(本小題滿分13分)已知函數(shù)

(I)求函數(shù)的單調(diào)區(qū)間;

(II)若,在(1,2)上為單調(diào)遞

 

減函數(shù)。求實數(shù)a的范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(北京卷解析版) 題型:解答題

已知函數(shù),(),

(1)若曲線與曲線在它們的交點(1,c)處具有公共切線,求a,b的值

(2)當(dāng)時,若函數(shù)的單調(diào)區(qū)間,并求其在區(qū)間(-∞,-1)上的最大值。

【解析】(1), 

∵曲線與曲線在它們的交點(1,c)處具有公共切線

(2)令,當(dāng)時,

,得

時,的情況如下:

x

+

0

-

0

+

 

 

所以函數(shù)的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為

當(dāng),即時,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上的最大值為

當(dāng),即時,函數(shù)在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間上單調(diào)遞減,在區(qū)間上的最大值為

當(dāng),即a>6時,函數(shù)在區(qū)間內(nèi)單調(diào)遞贈,在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間上單調(diào)遞增。又因為

所以在區(qū)間上的最大值為

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù) (ω>0)在區(qū)間上單調(diào)遞 增,在區(qū)間上單調(diào)遞減,則               (    )

 A.             B.          C. 2            D.3

查看答案和解析>>

同步練習(xí)冊答案