已知焦點(diǎn)在x軸上的橢圓的離心率為,且它的長軸長等于圓C:x2+y2-2x-15=0的半徑,則橢圓的標(biāo)準(zhǔn)方程是(  )
A.+=1B.+=1
C.+y2=1D.+=1
A
圓C的方程可化為(x-1)2+y2=16.
知其半徑r=4,
∴長軸長2a=4,∴a=2.
又e==,
∴c=1,b2=a2-c2=4-1=3,
∴橢圓的標(biāo)準(zhǔn)方程為+=1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心為坐標(biāo)原點(diǎn),短軸長為2,一條準(zhǔn)線的方程為l:x=2.
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)設(shè)O為坐標(biāo)原點(diǎn),F是橢圓的右焦點(diǎn),點(diǎn)M是直線l上的動點(diǎn),過點(diǎn)F作OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N,求證:線段ON的長為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心為原點(diǎn),離心率,其一個焦點(diǎn)在拋物線的準(zhǔn)線上,若拋物線與直線相切.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)點(diǎn)在橢圓上運(yùn)動時,設(shè)動點(diǎn)的運(yùn)動軌跡為.若點(diǎn)滿足:,其中上的點(diǎn),直線的斜率之積為,試說明:是否存在兩個定點(diǎn),使得為定值?若存在,求的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知頂點(diǎn)為原點(diǎn)的拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合在第一和第四象限的交點(diǎn)分別為.
(1)若△AOB是邊長為的正三角形,求拋物線的方程;
(2)若,求橢圓的離心率;
(3)點(diǎn)為橢圓上的任一點(diǎn),若直線、分別與軸交于點(diǎn),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,F1,F2是橢圓C1:+y2=1與雙曲線C2的公共焦點(diǎn),A,B分別是C1,C2在第二、四象限的公共點(diǎn).若四邊形AF1BF2為矩形,則C2的離心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,內(nèi)外兩個橢圓的離心率相同,從外層橢圓頂點(diǎn)向內(nèi)層橢圓引切線AC,BD,設(shè)內(nèi)層橢圓方程為 ,若直線AC與BD的斜率之積為,則橢圓的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

以F1(-1,0),F2(1,0)為焦點(diǎn)且與直線x-y+3=0有公共點(diǎn)的橢圓中,離心率最大的橢圓方程是(  )
A.+=1B.+=1
C.+=1D.+=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線=1和橢圓=1(a>0,mb>0)的離心率互為倒數(shù),那么以a,b,m為邊長的三角形是(  )
A.銳角三角形 B.直角三角形
C.鈍角三角形 D.銳角或鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知對于任意實數(shù)k,直線(k+1)x+(k)y-(3k)=0恒過定點(diǎn)F.設(shè)橢圓C的中心在原點(diǎn),一個焦點(diǎn)為F,且橢圓C上的點(diǎn)到F的最大距離為2+.
(1)求橢圓C的方程;
(2)設(shè)(m,n)是橢圓C上的任意一點(diǎn),圓Ox2y2r2(r>0)與橢圓C有4個相異公共點(diǎn),試分別判斷圓O與直線l1mxny=1和l2mxny=4的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案