已知tanα,tanβ分別是lg(6x2-5x+2)=0的兩個(gè)實(shí)根,則tan(α+β)=
 
考點(diǎn):兩角和與差的正切函數(shù)
專題:三角函數(shù)的求值
分析:由條件利用一元二次方程根與系數(shù)的關(guān)系可得tanα+tanβ和tanα•tanβ的值,從而求得 tan(α+β)的值.
解答: 解:由題意lg(6x2-5x+2)=0,
可得6x2-5x+1=0,tanα,tanβ分別是lg(6x2-5x+2)=0的兩個(gè)實(shí)根,
∴tanα+tanβ=
5
6
,tanα•tanβ=
1
6

∴tan(α+β)=
tanα+tanβ
1-tanα•tanβ
=
5
6
1-
1
6
=1.
故答案為:1.
點(diǎn)評(píng):本題主要考查一元二次方程根與系數(shù)的關(guān)系,兩角和的正切公式的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<
π
2
)的部分圖象,已知x1,x2∈(
π
3
,π),且f(x1)=f(x2),則f(x1+x2)=( 。
A、-1
B、-
3
2
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求二元一次方程組
2x+y=8
x+3y=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=sinx+cosx的單調(diào)增區(qū)間為
 
,已知sinα=
3
5
,且α∈(0,
π
2
),則f(α-
π
12
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=2cos2x+5sinx-4的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在利用電子郵件傳播病毒的例子中,如果第一輪感染的計(jì)算機(jī)數(shù)是80臺(tái),并且從第一輪起,以后各輪的每一臺(tái)計(jì)算機(jī)都可以感染下一輪的20臺(tái)計(jì)算機(jī),第5輪可以感染到多少臺(tái)計(jì)算機(jī)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):
sin(3π+α)cos(π-α)tan(π-α)cos(-α)
sin(5π-α)cos(3π+α)sin(-α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱臺(tái)ABCD-A1B1C1D1中,DD1⊥平面ABCD,底面ABCD是平行四邊形,AB=AD=2A1B1,∠BAD=60°
(1)證明:BB1⊥AC;
(2)若AB=2,且二面角A1-AB-C大小為60°,連接AC,BD,設(shè)交點(diǎn)為O,連接B1O.求三棱錐B1-ABO外接球的體積.
(球體體積公式:V=
4
3
πR3,R是球半徑)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|y=lg(x+1)},B={y=|y=1-ex,x∈R},則A∩B=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案