A. | [$\frac{4}{3}$,4] | B. | [$\frac{4}{3}$,4) | C. | [2,4] | D. | (2,4] |
分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用直線斜率的幾何意義進(jìn)行求解即可.
解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖,則設(shè)z=$\frac{2y}{2x+1}$=$\frac{y}{x+\frac{1}{2}}$,
則z的幾何意義是區(qū)域內(nèi)的P點(diǎn)與點(diǎn)M(-$\frac{1}{2}$,0)的斜率k;
如圖所示(k)min=kPA=$\frac{4}{3}$,(k)max=kPB=4,
則$\frac{2y}{2x+1}$的取值范圍是[$\frac{4}{3},4$)
故選:B.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用以及直線斜率的求解,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 5 | C. | 6 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{a(2a+l)}{{2\sqrt{{a^2}+{b^2}}}}$ | B. | $\frac{a+l}{{2\sqrt{{a^2}+{b^2}}}}$ | C. | $\frac{a(l-2a)}{{2\sqrt{{a^2}+{b^2}}}}$ | D. | $\frac{al}{{2\sqrt{{a^2}+{b^2}}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com