【題目】已知函數(shù),其中a為正實(shí)數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個(gè)極值點(diǎn),,求證:.
【答案】(1)答案不唯一,具體見解析(2)證明見解析;
【解析】
(1)根據(jù)函數(shù),求導(dǎo)得到,然后根據(jù),分討論求解.
(2)由(1)得到若函數(shù)有兩個(gè)極值點(diǎn),,則,且,,代入,得到,要證,只需證,構(gòu)造函數(shù),用導(dǎo)數(shù)法結(jié)合零點(diǎn)存在定理證明即可.
(1)因?yàn)楹瘮?shù),
所以,函數(shù)的定義域?yàn)?/span>,
令,
①若,即時(shí),則,此時(shí)的單調(diào)減區(qū)間為;
②若,即時(shí),
令,得,
當(dāng)或時(shí),,
當(dāng)時(shí),,
此時(shí)的單調(diào)減區(qū)間為,,
單調(diào)增區(qū)間為.
(2)由(1)知,當(dāng)時(shí),函數(shù)有兩個(gè)極值點(diǎn),,且,.
因?yàn)?/span>,
,
,
要證,只需證.
構(gòu)造函數(shù),
則,
在上單調(diào)遞增,又,,且在定義域上不間斷,
由零點(diǎn)存在定理,可知在上唯一實(shí)根,且.
則在上遞減,上遞增,所以的最小值為
因?yàn)?/span>,
當(dāng)時(shí),,則,
所以恒成立.
所以,
所以,得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線與曲線交于不同的兩點(diǎn)、,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】離心率的橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上.過點(diǎn)的斜率為的直線與橢圓交于點(diǎn)、,且滿足.
(1)固定,當(dāng)的面積取得最大值時(shí),求橢圓的方程;
(2)若變化,且,試問:實(shí)數(shù)和分別為何值時(shí),橢圓的長軸長取得最大值?并求出此時(shí)橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,給定由個(gè)點(diǎn)組成的正三角形點(diǎn)陣。在其中任意取三個(gè)點(diǎn),以這三點(diǎn)為頂點(diǎn)構(gòu)成的正三角形的概率為__________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的方程,從0,3,4,5,6,7,8,9,10這九個(gè)數(shù)中選出3個(gè)不同的數(shù),分別作圓心的橫坐標(biāo)、縱坐標(biāo)和圓的半徑.問:
(1)可以作多少個(gè)不同的圓?
(2)經(jīng)過原點(diǎn)的圓有多少個(gè)?
(3)圓心在直線上的圓有多少個(gè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為(為參數(shù)),,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程及曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于、兩點(diǎn),設(shè)、中點(diǎn)為,求弦長以及.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】戶外運(yùn)動(dòng)已經(jīng)成為一種時(shí)尚運(yùn)動(dòng),某單位為了了解員工喜歡戶外運(yùn)動(dòng)是否與性別有關(guān),決定從本單位全體650人中采用分層抽樣的辦法抽取50人進(jìn)行問卷調(diào)查,得到了如下列聯(lián)表:
喜歡戶外運(yùn)動(dòng) | 不喜歡戶外運(yùn)動(dòng) | 總計(jì) | |
男性 | 5 | ||
女性 | 10 | ||
總計(jì) | 50 |
已知在這50人中隨機(jī)抽取1人,抽到喜歡戶外運(yùn)動(dòng)的員工的概率是.
(1)請將上面的列聯(lián)表補(bǔ)充完整;
(2)求該公司男、女員工各多少人;
(3)在犯錯(cuò)誤的概率不超過0.005的前提下能否認(rèn)為喜歡戶外運(yùn)動(dòng)與性別有關(guān)?并說明你的理由.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著手機(jī)的發(fā)展,“微信”逐漸成為人們支付購物的一種形式.某機(jī)構(gòu)對“使用微信支付”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對“使用微信支付”贊成人數(shù)如下表.
年齡(單位:歲) |
|
| , | , | , | |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
(1)若以“年齡45歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計(jì) | |
贊成 | |||
不贊成 | |||
合計(jì) |
(2)若從年齡在的被調(diào)查人中按照贊成與不贊成分層抽樣,抽樣人數(shù)分別3人與2人,現(xiàn)對抽樣的5人進(jìn)行追蹤調(diào)查,在5人中抽取3人做專訪,求3人中不贊成使用微信支付的人數(shù)的分布列和期望值.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com