函數(shù)y=
3x-2
+lg(4-x)
的定義域?yàn)?!--BA-->
{x|log32≤x<4}
{x|log32≤x<4}
分析:由根式內(nèi)部的代數(shù)式大于等于0,對(duì)數(shù)式的真數(shù)大于0,聯(lián)立不等式組后求解x的取值集合即可得到函數(shù)的定義域.
解答:解:由
3x-2≥0  ①
4-x>0     ②

解①得:3x≥2,即x≥log32.
解②得:x<4.
∴l(xiāng)og32≤x<4.
∴函數(shù)y=
3x-2
+lg(4-x)
的定義域?yàn)閧x|log32≤x<4}.
故答案為:{x|log32≤x<4}.
點(diǎn)評(píng):本題考查了函數(shù)的定義域及其求法,考查了指數(shù)不等式的解法,是基礎(chǔ)的計(jì)算題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列:①方程2x-log2x=0無解;
②(x-2)•
x-1
≥0的解集為[2,+∞)
③“x<l”是“x<2”的充分不必要條件;
④函數(shù)y=x3過點(diǎn)A (1,1)的切線是y=3x-2;
其中真命題的序號(hào)是
 
.(寫出所有正確命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C是直線l上的不同的三點(diǎn),O是直線外一點(diǎn),向量
OA
,
OB
,
OC
滿足
OA
-(
3
2
x2+1)•
OB
-[ln(2+3x)-y]•
OC
=
0
,記y=f(x).
(1)求函數(shù)y=f(x)的解析式;
(2)若關(guān)于x的方程f(x)=2x+b在[0,1]上恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的為
①③④⑤
①③④⑤

①函數(shù)y=f(x)與直線x=1的交點(diǎn)個(gè)數(shù)為0或l;
②集合A={x|x2-3x-10≤0},B={x|a+1≤x≤2a-1},若B⊆A,則-3≤a≤3;
③函數(shù)y=f(2-x)與函數(shù)y=f(x-2)的圖象關(guān)于直線x=2對(duì)稱;
④函數(shù)y=lg(x2+x+a)的值域?yàn)镽 的充要條件是:a∈(-∞,
14
]

⑤與函數(shù)y=f(x)-2關(guān)于點(diǎn)(1,-1)對(duì)稱的函數(shù)為y=-f(2-x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線m:x+2y-3=0,函數(shù)y=3x+cosx的圖象與直線l相切于P點(diǎn),若l⊥m,則P點(diǎn)的坐標(biāo)可能是( 。
A.(-
π
2
,-
2
)
B.(
2
π
2
)
C.(
π
2
,
2
)
D.(-
2
,-
π
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省雅安市高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:解答題

給出下列:①方程2x-log2x=0無解;
②(x-2)•≥0的解集為[2,+∞)
③“x<l”是“x<2”的充分不必要條件;
④函數(shù)y=x3過點(diǎn)A (1,1)的切線是y=3x-2;
其中真命題的序號(hào)是    .(寫出所有正確命題的編號(hào))

查看答案和解析>>

同步練習(xí)冊答案