【題目】在以ABCDEF為頂點的五面體中,底面ABCD為菱形,∠ABC=120°,AB=AE=ED=2EF,EFAB,點G為CD中點,平面EAD⊥平面ABCD.
(1)證明:BD⊥EG;
(2)若三棱錐,求菱形ABCD的邊長.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某校學(xué)生課外時間的分配情況,擬采用分層抽樣的方法從該校的高一、高二、高三這三個年級中共抽取5個班進(jìn)行調(diào)查,已知該校的高一、高二、高三這三個年級分別有18、6、6個班級.
(Ⅰ)求分別從高一、高二、高三這三個年級中抽取的班級個數(shù);
(Ⅱ)若從抽取的5個班級中隨機(jī)抽取2個班級進(jìn)行調(diào)查結(jié)果的對比,求這2個班級中至少有1個班級來自高一年級的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書里出現(xiàn)了如圖所示的表,即楊輝三角,這是數(shù)學(xué)史上的一個偉大成就.在“楊輝三角”中,第行的所有數(shù)字之和為,若去除所有為1的項,依次構(gòu)成數(shù)列,則此數(shù)列的前55項和為( )
A. 4072B. 2026C. 4096D. 2048
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A.“”是“直線與直線相互平行”的充分不必條件
B.“直線垂直平面內(nèi)無數(shù)條直線”是“直線垂直于平面”的充分條件
C.已知、、為非零向量,則“”是“”的充要條件
D.:存在,.則:任意,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖的程序框圖中,若輸入,,則輸出的值是( )
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/21/1907086498037760/1907898837975040/STEM/25d20caaa911497ea3baaf4f7dee45a3.png]
A. 3 B. 7 C. 11 D. 33
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)().
(1)討論函數(shù)的單調(diào)性;
(2)若關(guān)于x的方程有唯一的實數(shù)解,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求圓的普通方程和直線的直角坐標(biāo)方程;
(2)設(shè)是直線上任意一點,過作圓切線,切點為,,求四邊形(點為圓的圓心)面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)若為整數(shù),函數(shù)恰好有兩個零點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程是(為參數(shù)),曲線的參數(shù)方程是(為參數(shù)).
(Ⅰ)將曲線,的參數(shù)方程化為普通方程;
(Ⅱ)求曲線上的點到曲線的距離的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com