設(shè)函數(shù)
(1)求導(dǎo)數(shù)
; 并證明
有兩個不同的極值點
;
(2)若不等式
成立,求
的取值范圍.
(1)
(2)
≥2。
(1)
因此
是極大值點,
是極小值點.
(II)因
又由(I)知
代入前面不等式,兩邊除以(1+
a),并化簡得
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知在函數(shù)
的圖象上以
N(1,
n)為切點的切線的傾斜角為
(Ⅰ)求
m、n的值;
(Ⅱ)是否存在最小的正整數(shù)
k,使得不等式
恒成立?如果存在,請求出最小的正整數(shù)
k;如果不存在,請說明理由;
(Ⅲ)(文科不做)求證:
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)已知函數(shù)
,且函數(shù)
的圖象關(guān)于原點對稱,其圖象在
處的切線方程為
(1)求
的解析式; (2)是否存在區(qū)間
使得函數(shù)
的定義域和值域均為
,且其解析式為f(x)的解析式?若存在,求出這樣的一個區(qū)間[m,n];若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
(1)當(dāng)
a=1時,試求函數(shù)
的單調(diào)區(qū)間,并證明此時方程
=0只有一個實數(shù)根,并求出此實數(shù)根;
(2)證明:
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知命題
函數(shù)
有極值;命題
函數(shù)
且
恒成立.若
為真命題,
為真命題,則
的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在R上可導(dǎo)函數(shù)
當(dāng)
時取得極大值。當(dāng)
時取得極小值,則
的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
,
(Ⅰ)若
是函數(shù)
的一個極值點,求實數(shù)
的值;
(Ⅱ)設(shè)
,當(dāng)
時,函數(shù)
的圖象恒不在直線
上方,求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
(I)(i)求函數(shù)
的圖象的交點A的坐標(biāo);
(ii)設(shè)函數(shù)
的圖象在交點A處的切線分別為
是否存在這樣的實數(shù)a,使得
?若存在,請求出a的值和相應(yīng)的點A坐標(biāo);若不存在,請說明理由。
(II)記
上最小值為F(a),求
的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
,
.
(I)若
,求函數(shù)
在區(qū)間
的最大值與最小值;
(II)若函數(shù)
在區(qū)間
和
上都是增函數(shù),求實數(shù)
的取值范圍.
查看答案和解析>>