【題目】下列關于概率和統(tǒng)計的幾種說法:
①10名工人某天生產同一種零件,生產的件數(shù)分別是15,17,14,10,15,17,17,16,14,12,設其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則a,b,c的大小關系為c>a>b;
②樣本4,2,1,0,-2的標準差是2;
③在面積為S的△ABC內任選一點P,則隨機事件“△PBC的面積小于”的概率為;
④從寫有0,1,2,…,9的十張卡片中,有放回地每次抽一張,連抽兩次,則兩張卡片上的數(shù)字各不相同的概率是.
其中正確說法的序號有________.
【答案】②④
【解析】
①根據平均數(shù),中位數(shù),眾數(shù)的定義進行比較即可;②根據標準差的公式進行判斷;③根據幾何概型的概率公式進行求解判斷;④根據古典概型概率概率公式進行判斷.
對于①,由題意原數(shù)據為10,12,14,14,15,15,16,17,17,17,故可得該組數(shù)據的平均數(shù),中位數(shù),眾數(shù)為,所以,故①不正確.
對于②,由題意得樣本的平均數(shù)為1,
故方差為,所以標準差為2,故②正確.
對于③,如圖,作出△ABC的高,當△PBC的面積等于時,,
要使△PBC的面積小于,則點P應位于圖中的陰影部分內,
由題意可得,故,
所以由幾何概型概率公式可得“△PBC的面積小于”的概率為,故③不正確.
對于④,由題意得所有的基本事件總數(shù)為個,事件“有放回地每次抽一張,連抽兩次,則兩張卡片上的數(shù)字各不相同”包含的基本事件有個,根據古典概型的概率公式得所求概率為,故④正確.
綜上可得②④正確.
故答案為②④.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC,△ABC是直角三角形,且PA=AB=AC.又平面QBC垂直于底面ABC.
(1)求證:PA∥平面QBC;
(2)若PQ⊥平面QBC,求銳二面角Q-PB-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣ )e﹣x(x≥ ).
(Ⅰ)求f(x)的導函數(shù);
(Ⅱ)求f(x)在區(qū)間[ ,+∞)上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:y2=2px過點P(1,1).過點(0, )作直線l與拋物線C交于不同的兩點M,N,過點M作x軸的垂線分別與直線OP、ON交于點A,B,其中O為原點.(14分)
(1)求拋物線C的方程,并求其焦點坐標和準線方程;
(2)求證:A為線段BM的中點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為直角梯形,AD∥BC,∠BAD=90°,PA=AD=AB=2BC=2,過AD的平面分別交PB,PC于M,N兩點.
(1)求證:MN∥BC;
(2)若M,N分別為PB,PC的中點,
①求證:PB⊥DN;
②求二面角P-DN-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,直線,設圓的半徑為1, 圓心在上.
(1)若圓心也在直線上,過點作圓的切線,求切線方程;
(2)若圓上存在點,使,求圓心的橫坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某幾何體的三視圖和直觀圖如圖所示,其正視圖為矩形,左視圖為等腰直角三角形,俯視圖為直角梯形.
(1)證明:平面BCN⊥平面C1NB1;
(2)求二面角C-NB1-C1的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】海水養(yǎng)殖場進行某水產品的新、舊網箱養(yǎng)殖方法的產量對比,收獲時各隨機抽取了100個網箱,測量各箱水產品的產量(單位:kg),其頻率分布直方圖如下:
(Ⅰ)記A表示時間“舊養(yǎng)殖法的箱產量低于50kg”,估計A的概率;
(Ⅱ)填寫下面列聯(lián)表,并根據列聯(lián)表判斷是否有99%的把握認為箱產量與養(yǎng)殖方法有關:
箱產量<50kg | 箱產量≥50kg | |
舊養(yǎng)殖法 | ||
新養(yǎng)殖法 |
(Ⅲ)根據箱產量的頻率分布直方圖,對兩種養(yǎng)殖方法的優(yōu)劣進行比較.
附:
P(K2≥K) | 0.050 | 0.010 | 0.001 |
K | 3.841 | 6.635 | 10.828 |
K2= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了監(jiān)控某種零件的一條生產線的生產過程,檢驗員每天從該生產線上隨機抽取16個零件,并測量其尺寸(單位:cm).根據長期生產經驗,可以認為這條生產線正常狀態(tài)下生產的零件的尺寸服從正態(tài)分布N(μ,σ2).(12分)
(1)假設生產狀態(tài)正常,記X表示一天內抽取的16個零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件數(shù),求P(X≥1)及X的數(shù)學期望;
(2)一天內抽檢零件中,如果出現(xiàn)了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就認為這條生產線在這一天的生產過程可能出現(xiàn)了異常情況,需對當天的生產過程進行檢查.
(。┰囌f明上述監(jiān)控生產過程方法的合理性;
(ⅱ)下面是檢驗員在一天內抽取的16個零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經計算得 = =9.97,s= = ≈0.212,其中xi為抽取的第i個零件的尺寸,i=1,2,…,16.
用樣本平均數(shù) 作為μ的估計值 ,用樣本標準差s作為σ的估計值 ,利用估計值判斷是否需對當天的生產過程進行檢查?剔除( ﹣3 +3 )之外的數(shù)據,用剩下的數(shù)據估計μ和σ(精確到0.01).
附:若隨機變量Z服從正態(tài)分布N(μ,σ2),則P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592, ≈0.09.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com