在△ABC中,M是BC的中點(diǎn),AM=2,點(diǎn)P在AM上,則數(shù)學(xué)公式的最小值為


  1. A.
    -1
  2. B.
    -2
  3. C.
    -4
  4. D.
    數(shù)學(xué)公式
B
分析:由題意,將化成2.設(shè)||=x,可得||=2-x,結(jié)合向量數(shù)量積公式可得=-2x(2-x),由二次函數(shù)求最值的方法即可得到所求最小值.
解答:解:∵M(jìn)是BC的中點(diǎn),
∴向量=2
設(shè)||=x,結(jié)合||=2得||=2-x
共線且反向,
=2=-2x(2-x),其中0<x<2
∵當(dāng)且僅當(dāng)x=2-x=1時(shí),x(2-x)的最大值為1
∴當(dāng)x=1是,-2x(2-x)的最小值為-2,即的最小值為-2
故選:B
點(diǎn)評(píng):本題在三角形中給出中線上一點(diǎn),求向量的數(shù)量積的最小值,著重考查了平面向量的線性運(yùn)算性質(zhì)、平面向量數(shù)量積計(jì)算公式等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,M是BC邊靠近B點(diǎn)的三等分點(diǎn),若
AB
=a,
AC
=b
,則
AM
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知下列四個(gè)命題:
①把y=2cos(3x+
π
6
)的圖象上每點(diǎn)的橫坐標(biāo)和縱坐標(biāo)都變?yōu)樵瓉?lái)的
3
2
倍,再把圖象向右平移
π
2
單位,所得圖象解析式為y=2sin(2x-
π
3

②若m∥α,n∥β,α⊥β,則m⊥n
③在△ABC中,M是BC的中點(diǎn),AM=3,點(diǎn)P在AM上且滿足
AP
=2
PM
,則
PA
•(
PB
+
PC
 )
等于-4.
④函數(shù)f(x)=xsinx在區(qū)間[0,
π
2
]
上單調(diào)遞增,函數(shù)f(x)在區(qū)間[-
π
2
,0]
上單調(diào)遞減.
其中是真命題的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆甘肅省天水市三中高三第六次檢測(cè)數(shù)學(xué)文卷 題型:單選題

在△ABC中,M是BC的中點(diǎn),AM=1,點(diǎn)P在AM上且滿足=2,則·( + )等于

A.-B.-C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年吉林省吉林一中高一(下)期末數(shù)學(xué)試卷(解析版) 題型:選擇題

已知下列四個(gè)命題:
①把y=2cos(3x+)的圖象上每點(diǎn)的橫坐標(biāo)和縱坐標(biāo)都變?yōu)樵瓉?lái)的倍,再把圖象向右平移單位,所得圖象解析式為y=2sin(2x-
②若m∥α,n∥β,α⊥β,則m⊥n
③在△ABC中,M是BC的中點(diǎn),AM=3,點(diǎn)P在AM上且滿足等于-4.
④函數(shù)f(x)=xsinx在區(qū)間上單調(diào)遞增,函數(shù)f(x)在區(qū)間上單調(diào)遞減.
其中是真命題的是( )
A.①②④
B.①③④
C.③④
D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年浙江省金華市艾青中學(xué)高考數(shù)學(xué)模擬試卷2(理科)(解析版) 題型:選擇題

已知下列四個(gè)命題:
①把y=2cos(3x+)的圖象上每點(diǎn)的橫坐標(biāo)和縱坐標(biāo)都變?yōu)樵瓉?lái)的倍,再把圖象向右平移單位,所得圖象解析式為y=2sin(2x-
②若m∥α,n∥β,α⊥β,則m⊥n
③在△ABC中,M是BC的中點(diǎn),AM=3,點(diǎn)P在AM上且滿足等于-4.
④函數(shù)f(x)=xsinx在區(qū)間上單調(diào)遞增,函數(shù)f(x)在區(qū)間上單調(diào)遞減.
其中是真命題的是( )
A.①②④
B.①③④
C.③④
D.①③

查看答案和解析>>

同步練習(xí)冊(cè)答案