7.若實(shí)數(shù)x、y滿足$\left\{\begin{array}{l}{2x-y≥0}\\{y≥x}\\{y≥-x+b}\end{array}\right.$且z=2x+y的最小值為4,則實(shí)數(shù)b的值為(  )
A.1B.2C.$\frac{5}{2}$D.3

分析 作出不等式組對于的平面區(qū)域,根據(jù)z=2x+y的最小值為4,利用數(shù)形結(jié)合即可得到結(jié)論.

解答 解:作出不等式組對于的平面區(qū)域如圖:
∵z=2x+y的最小值為4,即2x+y=4,
且y=-2x+z,則直線y=-2x+z的截距最小時(shí),z也取得最小值,
則不等式組對應(yīng)的平面區(qū)域在直線y=-2x+z的上方,
由$\left\{\begin{array}{l}{2x+y=4}\\{2x-y=0}\end{array}\right.$;,解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,
即A(1,2),
此時(shí)A也在直線y=-x+b上,
即2=-1+b,
解得b=3,
故選:D

點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若實(shí)數(shù)a,b,c滿足a+2b+3c=2,則當(dāng)a2+2b2+3c2取最小值時(shí),2a+4b+9c的值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若直線ax-by+2=0(a>0,b>0)過圓C:x2+y2+2x-4y+1=0的圓心,則$\frac{1}{a}$+$\frac{1}$的最小值為( 。
A.$\frac{1}{4}$B.$\sqrt{2}$C.$\frac{3}{2}$+$\sqrt{2}$D.$\frac{3}{2}$+2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.定義行列式運(yùn)算 $|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{a4}\end{array}|$=a1a4-a2a3.將函數(shù)f(x)=$|\begin{array}{l}{\sqrt{3}}&{sinx}\\{1}&{cosx}\end{array}|$的圖象向左平移n(n>0)個單位,所得圖象對應(yīng)的函數(shù)為偶函數(shù),則n的最小值為 ( 。
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.命題“?x∈R,2x>0”的否定是“?x∈R,2x≤0”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在直角坐標(biāo)系xOy中,曲線M的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}cosα+sinα}\\{y=2\sqrt{3}sinαcosα-2si{n}^{2}α+2}\end{array}\right.$(α為參數(shù)),若以直角坐標(biāo)系中的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線N的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$t(t為參數(shù)).
(Ⅰ)求曲線M和N的直角坐標(biāo)方程;
(Ⅱ)若曲線N與曲線M有公共點(diǎn),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若復(fù)數(shù)z滿足(3-4i)z=5+10i,其中i為虛數(shù)單位,則z的虛部為( 。
A.-2B.2C.-2iD.2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,角A、B、C的對邊分別為a、b、c,且$\frac{2sinC-sinB}{sinB}=\frac{{{a^2}+{c^2}-{b^2}}}{{{b^2}+{c^2}-{a^2}}}$.
(Ⅰ)求角A的大小;
(Ⅱ)若a=3,sinC=2sinB,求b、c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.正方體ABCD-A1B1C1D1中,M、N分別是被A1B1,A1D1的中點(diǎn),如圖是該正方體被過A,M,N和D,N,C1的兩個截面截去兩個角所得的幾何體,則該幾何體的正視圖為( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案