可以證明, 對(duì)任意的, 有成立. 下面嘗試推廣該命題:

(1)       設(shè)由三項(xiàng)組成的數(shù)列每項(xiàng)均非零, 且對(duì)任意的

成立, 求所有滿足條件的數(shù)列;

(2)設(shè)數(shù)列每項(xiàng)均非零, 且對(duì)任意的

成立, 數(shù)列的前項(xiàng)和為. 求證: , ;

(3)是否存在滿足(2)中條件的無窮數(shù)列, 使得? 若存在, 寫出一個(gè)這樣的無窮數(shù)列(不需要證明它滿足條件); 若不存在, 說明理由.

解:(1) 取, 有, 又, 所以.                                                (2分)

, 有, 于是, 又, 所以或2.                                                                                                          (4分)

, 有.

當(dāng)時(shí), , 又, 所以.

當(dāng)時(shí), , 整理得, , 所以.

綜上, 所有滿足條件的數(shù)列為.                                          (6分)

(2)由已知, , 用替換, 得到

.

兩式相減, 有

                            (9分)

 .

, 所以, .                                                         (12分)

(3)存在. 是一個(gè)滿足條件的無窮數(shù)列.                      (18分)

注: 滿足(2)中條件的數(shù)列遞推式為, 所以符合的數(shù)列前2012項(xiàng)必須為, 之后的項(xiàng)只需滿足遞推式即可, 但要注意不能出現(xiàn)值為0的項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

我們用符號(hào)“||”定義過一些數(shù)字概念,如實(shí)數(shù)絕對(duì)值的概念:對(duì)于a∈R,|a|=
a,a>0
0,a=0
-a,a<0
,可以證明,對(duì)任意a,b∈R,不等式|a|-|b|≤|a+b|≤|a|+|b|成立.
(1)再寫出兩個(gè)這類數(shù)學(xué)概念的定義及其成立的不等式;
(2)對(duì)于集合A,定義“|A|”為集合A中元素的個(gè)數(shù),對(duì)任意的集合A、B有類似的不等式成立嗎?如果有,寫出一個(gè),并指出等號(hào)成立的條件(不必說明理由);如果沒有,請(qǐng)說明理由;
(3)設(shè)有集合A、B,若|A|=15,|B|≥15,若從A中任取兩上元素,恰好都是B中元素的概率p≥
1
5
,求|A∩B|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•姜堰市模擬)可以證明,對(duì)任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面嘗試推廣該命題:
(1)設(shè)由三項(xiàng)組成的數(shù)列a1,a2,a3每項(xiàng)均非零,且對(duì)任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有滿足條件的數(shù)列;
(2)設(shè)數(shù)列{an}每項(xiàng)均非零,且對(duì)任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,數(shù)列{an}的前n項(xiàng)和為Sn.求證:an+12-an+1=2Sn,n∈N*
(3)是否存在滿足(2)中條件的無窮數(shù)列{an},使得a2012=-2011?若存在,寫出一個(gè)這樣的無窮數(shù)列(不需要證明它滿足條件); 若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

可以證明,對(duì)任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面嘗試推廣該命題:
(1)設(shè)由三項(xiàng)組成的數(shù)列a1,a2,a3每項(xiàng)均非零,且對(duì)任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有滿足條件的數(shù)列;
(2)設(shè)數(shù)列{an}每項(xiàng)均非零,且對(duì)任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,數(shù)列{an}的前n項(xiàng)和為Sn.求證:an+12-an+1=2Sn,n∈N*
(3)是否存在滿足(2)中條件的無窮數(shù)列{an},使得a2011=2009?若存在,寫出一個(gè)這樣的無窮數(shù)列(不需要證明它滿足條件); 若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

可以證明,對(duì)任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面嘗試推廣該命題:
(1)設(shè)由三項(xiàng)組成的數(shù)列a1,a2,a3每項(xiàng)均非零,且對(duì)任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有滿足條件的數(shù)列;
(2)設(shè)數(shù)列{an}每項(xiàng)均非零,且對(duì)任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,數(shù)列{an}的前n項(xiàng)和為Sn.求證:an+12-an+1=2Sn,n∈N*
(3)是否存在滿足(2)中條件的無窮數(shù)列{an},使得a2011=2009?若存在,寫出一個(gè)這樣的無窮數(shù)列(不需要證明它滿足條件); 若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省泰州市姜堰市蔣垛中學(xué)高三聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

可以證明,對(duì)任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面嘗試推廣該命題:
(1)設(shè)由三項(xiàng)組成的數(shù)列a1,a2,a3每項(xiàng)均非零,且對(duì)任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有滿足條件的數(shù)列;
(2)設(shè)數(shù)列{an}每項(xiàng)均非零,且對(duì)任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,數(shù)列{an}的前n項(xiàng)和為Sn.求證:an+12-an+1=2Sn,n∈N*;
(3)是否存在滿足(2)中條件的無窮數(shù)列{an},使得a2012=-2011?若存在,寫出一個(gè)這樣的無窮數(shù)列(不需要證明它滿足條件); 若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案