在不等式組所表示的平面區(qū)域內(nèi)所有的格點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為格點(diǎn))中任取3個(gè)點(diǎn),則該3點(diǎn)恰能成為一個(gè)三角形的三個(gè)頂點(diǎn)的概率為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)的定義域?yàn)榧?sub>.
(1)若函數(shù)的定義域也為集合,的值域?yàn)?sub>,求;
(2)已知,若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某工廠擬建一座平面圖為矩形,面積為的三段式污水處理池,池高為1,如果池的四周墻壁的建造費(fèi)單價(jià)為元,池中的每道隔墻厚度不計(jì),面積只計(jì)一面,隔墻的建造費(fèi)單價(jià)為元,池底的建造費(fèi)單價(jià)為元,則水池的長(zhǎng)、寬分別為多少米時(shí),污水池的造價(jià)最低?最低造價(jià)為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知命題:任意,,命題:函數(shù)在上單調(diào)遞減.
(1)若命題為真命題,求實(shí)數(shù)的取值范圍;
(2)若和均為真命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)和為不重合的兩個(gè)平面,給出下列命題:
(1)若內(nèi)的兩條相交直線分別平行于內(nèi)的兩條直線,
則平行于;
(2)若外一條直線與內(nèi)的一條直線平行,則和平行;
(3)設(shè)和相交于直線,若內(nèi)有一條直線垂直于,則和垂直;
(4)直線與垂直的充分必要條件是與內(nèi)的兩條直線垂直.
上面命題中,真命題的序號(hào) (寫出所有真命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的左右兩焦點(diǎn)分別為,是橢圓上一點(diǎn),且在軸上方, .
(1)求橢圓的離心率的取值范圍;
(2)當(dāng)取最大值時(shí),過的圓的截軸的線段長(zhǎng)為6,求橢圓的方程;
(3)在(2)的條件下,過橢圓右準(zhǔn)線上任一點(diǎn)引圓的兩條切線,切點(diǎn)分別為.試探究直線是否過定點(diǎn)?若過定點(diǎn),請(qǐng)求出該定點(diǎn);否則,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)集合A=(―∞, ―2]∪[3, +∞),關(guān)于x的不等式(x-2a)·(x+a)>0的解集為B(其中a<0).
(1)求集合B;
(2)設(shè)p: x∈A, q: x∈B,且Øp是Øq的充分不必要條件,求a的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com