已知等差數(shù)列{an}中,首項(xiàng)a1=1,公差d為整數(shù),且滿足a1+3<a3,a2+5>a4,數(shù)列{bn}滿足bn=,其前n項(xiàng)和為Sn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若S2為S1,Sm (m∈N)的等比中項(xiàng),求正整數(shù)m的值.
(3)對(duì)任意正整數(shù)k,將等差數(shù)列{an}中落入?yún)^(qū)間(2k,22k)內(nèi)項(xiàng)的個(gè)數(shù)記為ck,求數(shù)列{cn}的前n項(xiàng)和Tn

(1)=1+(n1)2=2n1;(2)=12;(3).

解析試題分析:(1)根據(jù)題意先確定的值,再根據(jù)等差數(shù)列的通項(xiàng)公式求解;(2)根據(jù)(1)所得的通項(xiàng)公式求出,利用裂項(xiàng)求和法求出其前項(xiàng)和,再根據(jù)等比中項(xiàng)的定義列式求解;(3))對(duì)任意正整數(shù)k,,則,而,由題意可知 ,利用分組求和法可解答.
試題解析:(1)由題意,得解得< d <.           2分
又d∈Z,∴d=2.
=1+(n1)2=2n1.             4分
(2)∵            ..6分
       7分
,,, ()的等比中項(xiàng),
,即,
解得=12.                                               .9分
(3)對(duì)任意正整數(shù)k,,則,
,由題意可知   ,                  12分
于是
,
.                                 14分
考點(diǎn):等差數(shù)列的通項(xiàng)公式、裂項(xiàng)求和法、分組求和、等比數(shù)列前項(xiàng)和公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

等差數(shù)列中,,公差,且它的第2項(xiàng),第5項(xiàng),第14項(xiàng)分別是等比數(shù)列的第2項(xiàng),第3項(xiàng),第4項(xiàng).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列對(duì)任意自然數(shù)均有成立,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的各項(xiàng)都是正數(shù),且對(duì)任意,都有,其中 為數(shù)列的前項(xiàng)和。
(1)求證數(shù)列是等差數(shù)列;
(2)若數(shù)列的前項(xiàng)和為Tn,求Tn。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等差數(shù)列的前項(xiàng)和為.且
(1)求數(shù)列的通項(xiàng)公式;
(2)若,數(shù)列滿足:,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的前項(xiàng)和為,且.
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè)等比數(shù)列,若,求數(shù)列的前項(xiàng)和
(Ⅲ)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的前項(xiàng)和為,公差,,且成等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前項(xiàng)和公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列是等差數(shù)列,且
(1)求數(shù)列的通項(xiàng)公式
(2)令,求數(shù)列前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列滿足:的前n項(xiàng)和為
(1)求;
(2)令,求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列{an}是公比為的等比數(shù)列,且1-a2是a1與1+a3的等比中項(xiàng),前n項(xiàng)和為Sn;數(shù)列{bn}是等差數(shù)列,b1=8,其前n項(xiàng)和Tn滿足Tn=n·bn+1(為常數(shù),且≠1).
(I)求數(shù)列{an}的通項(xiàng)公式及的值;
(Ⅱ)比較+++ +Sn的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案