已知函數(shù)y=f(x)在定義域[-1,1]上是奇函數(shù),又是減函數(shù).
(1)求證:對任意x1、x2∈[-1,1],有[f(x1)+f(x2)]•(x1+x2)≤0;
(2)若f(2-a2)>0,求實(shí)數(shù)a的取值范圍.
考點(diǎn):奇偶性與單調(diào)性的綜合
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由x2∈[-1,1],可得-x2∈[-1,1],利用函數(shù)y=f(x)在定義域[-1,1]上是奇函數(shù),又是減函數(shù),即可證明結(jié)論;
(2)f(2-a2)>0,等價(jià)于-1≤2-a2<0,即可求出實(shí)數(shù)a的取值范圍.
解答: (1)證明:∵x2∈[-1,1],∴-x2∈[-1,1],
設(shè)x1≤-x2,則∵函數(shù)y=f(x)是減函數(shù),
∴f(x1)≥f(-x2),
∵函數(shù)y=f(x)是奇函數(shù),
∴f(x1)≥-f(x2),
∴f(x1)+f(x2)≥0,
∵x1+x2≤0,
∴[f(x1)+f(x2)]•(x1+x2)≤0;
(2)解:由題意f(0)=0,則
∵f(2-a2)>0,
∴-1≤2-a2<0,
∴-
3
≤a<
2
2
<a≤
3
點(diǎn)評:本題考查奇偶性與單調(diào)性的綜合,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
OA
=(1,0),
OB
=(1,1),則向量
OA
,
OB
的夾角為( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠經(jīng)過技術(shù)改造后,降低了能源消耗,經(jīng)統(tǒng)計(jì)該廠某種產(chǎn)品的產(chǎn)量x(單位:噸)與相應(yīng)的生產(chǎn)能耗y(單位:噸)有如下幾組樣本數(shù)據(jù):
x 3 4 5 6
y 2.5 3 4 4.5
根據(jù)相關(guān)性檢驗(yàn),這組樣本數(shù)據(jù)具有線性相關(guān)關(guān)系,通過線性回歸分析,求得回歸直線的斜率為0.7.已知該產(chǎn)品的年產(chǎn)量為10噸,則該工廠每年大約消耗的汽油為多少噸?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

試比較函數(shù)y=x2與函數(shù)y=xlnx在區(qū)間(1,+∞)上的增長快慢.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了慶!拔逡粍趧庸(jié)”,某校教師進(jìn)行趣味投籃比賽,比賽規(guī)則是:每場投5個球,至少投進(jìn)3個球且最后2個球都投進(jìn)者獲獎;否則不獲獎.已知教師甲投進(jìn)每個球的概率都是
2
3

(1)記教師甲在每場的5次投球中投進(jìn)球的個數(shù)為X,求X的分布列及數(shù)學(xué)期望;
(2)求教師甲在一場比賽中獲獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一枚均勻的硬幣連續(xù)拋擲四次,求:
(1)恰好出現(xiàn)兩次正面向上的概率;
(2)恰好出現(xiàn)三次正面朝上的概率;
(3)至少出現(xiàn)一次正面朝上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=
m+1
-
m
,b=
m
-
m-1
,試比較a,b的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD的底面為菱形,PA⊥面ABCD,且PA=AB,∠BAD=60°,E、F分別是PA、BC的中點(diǎn).
(Ⅰ)求證:BE∥平面PDF;
(Ⅱ)過BD作一平面交棱PC于點(diǎn)M,若二面角M-BD-C的大小為60°,求
CM
MP
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=3cos2
ωx
2
+
3
2
sinωx-
3
2
(ω>0)在一個周期內(nèi)的圖線如圖,A為圖象的最高點(diǎn),B、C為圖線與x軸的交點(diǎn),且△ABC為正三角形.
(Ⅰ)求f(x)的解析式;
(Ⅱ)將f(x)的圖象向右平移一個單位長度后得到函數(shù)g(x)的圖象,若x∈[0,2],求函數(shù)g(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案