14.已知向量$\overrightarrow{a}$=(sin$\frac{x}{2}$,$\frac{1}{2}$),$\overrightarrow$=($\sqrt{3}$cos$\frac{x}{2}$-sin$\frac{x}{2}$,1),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,△ABC三個內角A,B,C的對邊分別為a,b,c.
(1)求f(x)的單調遞增區(qū)間:
(2)若f(B+C)=1,a=$\sqrt{3}$,b=1.求△ABC的面積S.

分析 (1)利用數(shù)量積運算性質、和差公式、正弦函數(shù)的單調性即可得出;
(2)由f(B+C)=1,可得$sin(B+C+\frac{π}{6})$=1,化為sin$(A-\frac{π}{6})$=1,根據(jù)A∈(0,π),可得$A=\frac{2π}{3}$.再利用正弦定理可得:$\frac{\sqrt{3}}{sin\frac{2π}{3}}$=$\frac{1}{sinB}$,可得B,進而得到C.于是△ABC的面積S=$\frac{1}{2}absinC$.

解答 解:(1)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$=$sin\frac{x}{2}$($\sqrt{3}$cos$\frac{x}{2}$-sin$\frac{x}{2}$)+$\frac{1}{2}$=$\frac{\sqrt{3}}{2}sinx$+$\frac{1-2si{n}^{2}\frac{x}{2}}{2}$=$\frac{\sqrt{3}}{2}sinx$+$\frac{1}{2}cosx$=$sin(x+\frac{π}{6})$,
由$2kπ-\frac{π}{2}$≤x+$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,解得2kπ$-\frac{2π}{3}$≤x≤$\frac{π}{3}$+2kπ,(k∈Z).
∴f(x)的單調遞增區(qū)間是[2kπ$-\frac{2π}{3}$,$\frac{π}{3}$+2kπ],(k∈Z).
(2)∵f(B+C)=1,
∴$sin(B+C+\frac{π}{6})$=1,
∴$sin(π-A+\frac{π}{6})$=1,
∴sin$(A-\frac{π}{6})$=1,
∵A∈(0,π),
∴$(A-\frac{π}{6})$∈$(-\frac{π}{6},\frac{5π}{6})$,
解得$A-\frac{π}{6}$=$\frac{π}{2}$,∴$A=\frac{2π}{3}$.
由正弦定理可得:$\frac{\sqrt{3}}{sin\frac{2π}{3}}$=$\frac{1}{sinB}$,∴sinB=$\frac{1}{2}$,又B為銳角,∴$B=\frac{π}{6}$,可得C=$\frac{π}{6}$.
∴△ABC的面積S=$\frac{1}{2}absinC$=$\frac{1}{2}×\sqrt{3}×1×sin\frac{π}{6}$=$\frac{\sqrt{3}}{4}$.

點評 本題考查了數(shù)量積運算性質、和差公式、正弦函數(shù)的單調性、正弦定理、三角形內角和定理、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.設三棱柱ABC-A1B1C1的側棱垂直于底面,$AB=AC=2,\;∠\;BAC=90°,\;A{A_1}=2\sqrt{2}$,且三棱柱的所有頂點都在同一球面上,則該球的表面積是16π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.計算:
(1)${({\frac{25}{9}})^{\frac{1}{2}}}+{3^0}-{({\frac{3}{4}})^{-1}}$
(2)$\frac{1}{2}lg25+lg2-lg10-{log_2}9•{log_3}$2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.求適合下列條件的雙曲線的標準方程:
(1)焦點在y軸上,虛軸長為12,離心率為$\frac{5}{4}$;
(2)頂點間的距離為4,漸近線方程為$y=±\frac{1}{2}x$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知$\underset{lim}{n→∞}$$\frac{{x}^{n+1}}{1-{x}^{n}}$存在,f(x)=$\underset{lim}{n→∞}$$\frac{{x}^{n+1}}{1-{x}^{n}}$,則f(f(x))=$\left\{\begin{array}{l}{0,x∈(-1,1)}\\{x,x∈(-∞,-1)∪(1,+∞)}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知數(shù)列{an}為等差數(shù)列,是${a}_{1}^{2}$+${a}_{7}^{2}$≤10,則a4的最大值是?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.求直線$\left\{\begin{array}{l}{x=1+t}\\{y=1-t}\end{array}\right.$被圓(x-1)2+y2=1所截得的線段的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知集合A={1,2},B={x|ax+1=0},且A∪B=A,則a的值組成的集合為{0,-1,-$\frac{1}{2}$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=-2sin(3x+$\frac{π}{2}$).
(1)求函數(shù)圖象的對稱中心和對稱軸;
(2)寫出函數(shù)的單調遞減區(qū)間;
(3)此函數(shù)圖象可由函數(shù)y=cosx圖象怎樣變換得到?

查看答案和解析>>

同步練習冊答案