精英家教網 > 高中數學 > 題目詳情
20.己知:點A(2,3),B(5,4),C(7,10),若$\overrightarrow{AP}$=$\overrightarrow{AB}$+λ•$\overrightarrow{AC}$(λ∈R).
(1)求點p的坐標;
(2)試求λ為何值時,點P在第一、三象限平分線上?點P在第三象限內?

分析 (1)利用$\overrightarrow{AP}$=$\overrightarrow{AB}$+λ•$\overrightarrow{AC}$,可得(x-2,y-3)=(3,1)+(5λ,7λ),即可求點P的坐標;
(2)利用P在第一、三象限平分線上,可得5λ+5=7λ+4;利用點P在第三象限內,可得5λ+5<0且7λ+4<0,即可得出結論.

解答 解:(1)設P(x,y),
∵$\overrightarrow{AP}$=$\overrightarrow{AB}$+λ•$\overrightarrow{AC}$,
∴(x-2,y-3)=(3,1)+(5λ,7λ),
∴x-2=3+5λ,y-3=1+5λ,即x=5λ+5,y=7λ+4,
∴P(5λ+5,7λ+4);
(2)∵P在第一、三象限平分線上,
∴5λ+5=7λ+4,
∴λ=$\frac{1}{2}$,
∵點P在第三象限內,
∴5λ+5<0且7λ+4<0,解得:λ<-1.

點評 本題考查向量的坐標運算,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

10.歐拉公式eix=cosx+isinx(i為虛數單位)是由瑞士著名數學家歐拉發(fā)明的,它將指數函數的定義域擴大到復數,建立了三角函數和指數函數的關系,它在復變函數論里占用非常重要的地位,被譽為“數學中的天橋”,根據歐拉公式可知,e2i表示的復數在復平面中位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.若cosα=-$\frac{{\sqrt{3}}}{3}$,sin2α>0,則tanα的值為(  )
A.-$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.-$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.化簡求值:
(1)sin($\frac{π}{4}$-3x)cos($\frac{π}{3}$-3x)-sin($\frac{π}{4}$+3x)sin($\frac{π}{3}$-3x);
(2)sin(α+β)cosα-cos(α+β)sinα;
(3)$\frac{sin27°+cos45°sin18°}{cos27°-sin45°sin18°}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.已知函數f(x)=$\left\{\begin{array}{l}{aln(x+1),x≥0}\\{\frac{1}{3}{x}^{3}-ax,x<0}\end{array}\right.$,g(x)=ex-1(e為自然對數的底數)
(1)當a>0時,求函數f(x)的極值;
(2)當a在R上變化時,討論函數h(x)=g(x)-f(x)的零點的個數;
(3)求證:$\frac{1095}{1000}$<$\root{10}{e}$<$\frac{3000}{2699}$.(參考數據:ln1.1≈0.0953)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.已知點F的坐標為(0,$\frac{3}{2}$),動圓P經過點F且和直線y=-$\frac{3}{2}$相切.
(1)求動圓P的圓心軌跡W的方程;
(2)過點F的直線1,交軌跡W于A、B兩點,若|AB|=12,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.已知△ABC是等腰三角形,則向量$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$所在的直線與BC垂直(填:平行,垂直)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.各項均為正數的數列{an}滿足:na2n+1=(n+1)a2n+anan+1,且a3=$\frac{3π}{4}$,若Sn為數列{an}的前n項和,則tanS2015等于(  )
A.-$\sqrt{3}$B.-1C.0D.1

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.已知函數f(x)=ax7+bx5+cx3+dx+4,其中a、b、c、d是常數,如果f(-5)=5,則f(5)等于3.

查看答案和解析>>

同步練習冊答案