【題目】阿波羅尼斯是古希臘著名數(shù)學家,與歐幾里得、阿基米德被稱為亞歷山大時期數(shù)學三巨匠,他對圓錐曲線有深刻而系統(tǒng)的研究,主要研究成果集中在他的代表作《圓錐曲線》一書,阿波羅尼斯圓是他的研究成果之一,指的是:已知動點M與兩定點A、B的距離之比為λ(λ>0,λ≠1),那么點M的軌跡就是阿波羅尼斯圓.下面,我們來研究與此相關的一個問題.已知圓:x2+y2=1和點 ,點B(1,1),M為圓O上動點,則2|MA|+|MB|的最小值為( )
A.
B.
C.
D.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=cos(+x)cos(-x),g(x)=sin 2x-.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)h(x)=f(x)-g(x)的最大值,并求使h(x)取得最大值的x的集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,函數(shù)恰有兩個不同的零點,求實數(shù)的值;
(2)當時,
① 若對于任意,恒有,求的取值范圍;
② 若,求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,函數(shù).
(Ⅰ)當時,解不等式;
(Ⅱ)若關于的方程的解集中恰有一個元素,求的取值范圍;
(Ⅲ)設,若對任意,函數(shù)在區(qū)間上的最大值與最小值的和不大于,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)y=3sin(2x + )
(1)求最小正周期、對稱軸和對稱中心;
(2)簡述此函數(shù)圖象是怎樣由函數(shù)y=sinx的圖象作變換得到的.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對正整數(shù)n,記In={1,2,3,...,n},Pn={|m∈In,k∈In}.
(1)求集合P7中元素的個數(shù);
(2)若Pn的子集A中任意兩個元素之和不是整數(shù)的平方,則稱A為“稀疏集”.求n的最大值,使Pn能分成兩個不相交的稀疏集的并集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某桶裝水經營部每天的房租、人員工資等固定成本為200元,每桶水的進價為5元,銷售單價與日均銷售量的關系如圖所示.
銷售單價/元 | … | 6 | 6.5 | 7 | 7.5 | 8 | 8.5 | … |
日均銷售量/桶 | … | 480 | 460 | 440 | 420 | 400 | 380 | … |
請根據(jù)以上數(shù)據(jù)作出分析,這個經營部怎樣定價才能獲得最大利潤?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com