(2013•崇明縣二模)已知函數(shù)f(x)=sinx+acos2
x
2
(a為常數(shù),a∈R),且x=
π
2
是方程f(x)=0的解.當(dāng)x∈[0,π]時(shí),函數(shù)f(x)值域?yàn)?!--BA-->
[-2,
2
-1]
[-2,
2
-1]
分析:利用x=
π
2
是方程f(x)=0的解.求出a,然后通過二倍角的余弦函數(shù)兩角和的正弦函數(shù)化簡函數(shù)表達(dá)式,然后求解函數(shù)的值域.
解答:解:因?yàn)?span id="iuts7xn" class="MathJye">x=
π
2
是方程f(x)=0的解.
所以0=sin
π
2
+acos2
π
4
,所以=-2,
f(x)=sinx-2cos2
x
2
=sinx-cosx-1=
2
sin(x-
π
4
)-1,
x∈[0,π],所以x-
π
4
∈[-
π
4
,
4
]
,
sin(x-
π
4
∈[-
2
2
,1]
,
2
sin(x-
π
4
)-1∈[-2,
2
-1
].
故答案為:[-2,
2
-1
].
點(diǎn)評(píng):本題考查二倍角的余弦函數(shù),兩角和的正弦函數(shù)的應(yīng)用,三角函數(shù)值域的求法,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•崇明縣二模)某日用品按行業(yè)質(zhì)量標(biāo)準(zhǔn)分成五個(gè)等級(jí),等級(jí)系數(shù)X依次為1,2,3,4,5.現(xiàn)從一批該日用品中抽取200件,對(duì)其等級(jí)系數(shù)進(jìn)行統(tǒng)計(jì)分析,得到頻率f的分布表如下:
X 1 2 3 4 5
f a 0.2 0.45 0.15 0.1
則在所抽取的200件日用品中,等級(jí)系數(shù)X=1的件數(shù)為
20
20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•崇明縣二模)已知數(shù)列{an}是各項(xiàng)均不為0的等差數(shù)列,公差為d,Sn為其前n項(xiàng)和,且滿足an2=S2n-1,n∈N*.?dāng)?shù)列{bn}滿足bn=
1anan+1
,n∈N*,Tn為數(shù)列{bn}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式an和數(shù)列{bn}的前n項(xiàng)和Tn;
(2)若對(duì)任意的n∈N*,不等式λTn<n+8•(-1)n恒成立,求實(shí)數(shù)λ的取值范圍;
(3)是否存在正整數(shù)m,n(1<m<n),使得T1,Tm,Tn成等比數(shù)列?若存在,求出所有m,n的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•崇明縣二模)設(shè)函數(shù) f(x)=
2x      (x≤0)
log2x (x>0)
,函數(shù)y=f[f(x)]-1的零點(diǎn)個(gè)數(shù)為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•崇明縣二模)已知函數(shù)f(x)=(cos2xcosx+sin2xsinx)sinx,x∈R,則f(x)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•崇明縣二模)在直角△ABC中,∠C=90°,∠A=30°,BC=1,D為斜邊AB的中點(diǎn),則 
AB
CD
=
-1
-1

查看答案和解析>>

同步練習(xí)冊(cè)答案