(12分)已知橢圓.過(guò)點(diǎn)作圓的切線交橢圓于
,兩點(diǎn).
(1)求橢圓的焦點(diǎn)坐標(biāo)和離心率;
(2)將表示為的函數(shù),并求的最大值.
(1)橢圓G的焦點(diǎn)坐標(biāo)為離心率為
(2)當(dāng)時(shí),|AB|=2,所以|AB|的最大值為2.
解析試題分析:(1)由橢圓的標(biāo)準(zhǔn)方程可知a=2,b=1,,顯然易求焦點(diǎn)坐標(biāo)及離心率,但要注意焦點(diǎn)在x軸上.
(2)因?yàn)檫^(guò)點(diǎn)(m,0)作圓的切線,所以此點(diǎn)在圓上或在圓外,因而要對(duì)m的范圍進(jìn)行討論.
然后設(shè)過(guò)點(diǎn)(m,0)的直線l的方程,根據(jù)直線l與圓相切,可得直線l的斜率,再與橢圓聯(lián)立,利用韋達(dá)定理和判別式,弦長(zhǎng)公式求得弦長(zhǎng)|AB|與m的函數(shù)關(guān)系式,再利用基本不等式求得最大值.
(1)由已知得所以
所以橢圓G的焦點(diǎn)坐標(biāo)為離心率為
(2)由題意知,.
當(dāng)時(shí),切線的方程,點(diǎn)A、B的坐標(biāo)分別為
此時(shí)當(dāng)m=-1時(shí),同理可得
當(dāng)時(shí),設(shè)切線的方程為
由
設(shè)A、B兩點(diǎn)的坐標(biāo)分別為,則
又由與圓
所以
由于當(dāng)時(shí),所以.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e1/3/unkq8.png" style="vertical-align:middle;" />且當(dāng)時(shí),|AB|=2,所以|AB|的最大值為2.
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程及性質(zhì),直線與圓的位置關(guān)系,直線與橢圓的位置關(guān)系,弦長(zhǎng)公式,基本不等式求最值.
點(diǎn)評(píng):本小題第(2)問(wèn)綜合性解決起來(lái)難度大,第一個(gè)要注意的時(shí)點(diǎn)(m,0)在圓上或圓外,因而要對(duì)m=1,m=-1,|m|>1三情況進(jìn)行討論求|AB|的弦長(zhǎng),表示出弦長(zhǎng)|AB|關(guān)于m的函數(shù)表達(dá)式后還要注意適用基本不等式求最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)已知橢圓C:以雙曲線的焦點(diǎn)為頂點(diǎn),其離心率與雙曲線的離心率互為倒數(shù).
(1)求橢圓C的方程;
(2)若橢圓C的左、右頂點(diǎn)分別為點(diǎn)A,B,點(diǎn)M是橢圓C上異于A,B的任意一點(diǎn).
①求證:直線MA,MB的斜率之積為定值;
②若直線MA,MB與直線x=4分別交于點(diǎn)P,Q,求線段PQ長(zhǎng)度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的焦點(diǎn)和,長(zhǎng)軸長(zhǎng)6,設(shè)直線交橢圓于,兩點(diǎn),求線段的中點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
斜率為k的直線過(guò)點(diǎn)P(0,1),與雙曲線交于A,B兩點(diǎn).
(1)求實(shí)數(shù)k的取值范圍;
(2)若以AB為直徑的圓過(guò)坐標(biāo)原點(diǎn),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)(12分)經(jīng)過(guò)點(diǎn)作直線交雙曲線于、兩點(diǎn),且 為 中點(diǎn).
(1)求直線的方程 ;(2)求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓的左、右頂點(diǎn)分別為、,點(diǎn)在橢圓上且異于、兩點(diǎn),為坐標(biāo)原點(diǎn).
(1)若直線與的斜率之積為,求橢圓的離心率;
(2)對(duì)于由(1)得到的橢圓,過(guò)點(diǎn)的直線交軸于點(diǎn),交軸于點(diǎn),若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的焦點(diǎn)F1(-,0)和F2(,0),長(zhǎng)軸長(zhǎng)6。
(1)求橢圓C的標(biāo)準(zhǔn)方程。
(2)設(shè)直線交橢圓C于A、B兩點(diǎn),求線段AB的中點(diǎn)坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)
設(shè)直線與拋物線交于不同兩點(diǎn)A、B,F(xiàn)為拋物線的焦點(diǎn)。
(1)求的重心G的軌跡方程;
(2)如果的外接圓的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的右焦點(diǎn)為,離心率為.
(1)若,求橢圓的方程; (2)設(shè)直線與橢圓相交于兩點(diǎn),分別為線段的中點(diǎn).若坐標(biāo)原點(diǎn)在以為直徑的圓上,且,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com