設二項展開式Cn=(+1)2n-1(n∈N*)的整數(shù)部分為An,小數(shù)部分為Bn
(1)計算C1B1,C2B2的值;
(2)求CnBn
【答案】分析:(1)將n分別用1,2 代替求出C1,C2,利用多項式的乘法展開,求出C1,C2的小數(shù)部分B1,B2,求出C1B1,C2B2的值.
(2)利用二項式定理表示出Cn,再利用二項式定理表示出,兩個式子相減得到展開式的整數(shù)部分和小數(shù)部分,求出CnBn的值.
解答:解:(1)因為,
所以,A1=2,,所以C1B1=2;
,其整數(shù)部分A2=20,小數(shù)部分
所以C2B2=8.
(2)因為

①-②得:
=2(
,所以
所以
點評:解決二項式的有關問題一般利用二項式定理;解決二項展開式的通項問題常利用的工具是二項展開式的通項公式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設二項展開式Cn=(
3
+1)2n-1(n∈N*)的整數(shù)部分為An,小數(shù)部分為Bn
(1)計算C1B1,C2B2的值;
(2)求CnBn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設二項展開式Cn=(
3
+1)2n-1
(n∈N*)的小數(shù)部分為Bn
(1)計算C1B1,C2B2的值;
(2)求證:CnBn=22n-1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設二項展開式Cn=(
3
+1)2n-1(n∈N*)的整數(shù)部分為An,小數(shù)部分為Bn
(1)計算C1B1,C2B2的值;
(2)求CnBn

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省揚州中學高三(上)12月質(zhì)量檢測數(shù)學試卷(解析版) 題型:解答題

設二項展開式Cn=(+1)2n-1(n∈N*)的整數(shù)部分為An,小數(shù)部分為Bn
(1)計算C1B1,C2B2的值;
(2)求CnBn

查看答案和解析>>

同步練習冊答案