已知橢圓的焦點(diǎn)在軸上,離心率為,對(duì)稱(chēng)軸為坐標(biāo)軸,且經(jīng)過(guò)點(diǎn)
(1)求橢圓的方程;
(2)直線(xiàn)與橢圓相交于、兩點(diǎn), 為原點(diǎn),在、上分別存在異于點(diǎn)的點(diǎn)、,使得在以為直徑的圓外,求直線(xiàn)斜率的取值范圍.
(1) (2)

試題分析:(1)利用待定系數(shù)法設(shè)橢圓方程為,然后利用題目條件建立方程,解方程即可;(2)聯(lián)立直線(xiàn)與橢圓方程,得到關(guān)于x的一元二次方程,,然后利用韋達(dá)定理結(jié)合點(diǎn)在圓外為銳角,即,建立不等式求直線(xiàn)斜率的取值范圍即可.
試題解析:(1)依題意,可設(shè)橢圓的方程為

∵ 橢圓經(jīng)過(guò)點(diǎn),則,解得
∴ 橢圓的方程為
(2)聯(lián)立方程組,消去整理得
∵ 直線(xiàn)與橢圓有兩個(gè)交點(diǎn),
,解得  ① 
∵ 原點(diǎn)在以為直徑的圓外,∴為銳角,即
分別在、上且異于點(diǎn),即   
設(shè)兩點(diǎn)坐標(biāo)分別為,


解得  , ②  
綜合①②可知:  
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線(xiàn)C:y2=2px(p>0)的焦點(diǎn)F和橢圓的右焦點(diǎn)重合,直線(xiàn)過(guò)點(diǎn)F交拋物線(xiàn)于A、B兩點(diǎn).
(1)求拋物線(xiàn)C的方程;
(2)若直線(xiàn)交y軸于點(diǎn)M,且,m、n是實(shí)數(shù),對(duì)于直線(xiàn),m+n是否為定值?
若是,求出m+n的值;否則,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓:的離心率為,過(guò)橢圓右焦點(diǎn)的直線(xiàn)與橢圓交于點(diǎn)(點(diǎn)在第一象限).
(1)求橢圓的方程;
(2)已知為橢圓的左頂點(diǎn),平行于的直線(xiàn)與橢圓相交于兩點(diǎn).判斷直線(xiàn)是否關(guān)于直線(xiàn)對(duì)稱(chēng),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓,橢圓的長(zhǎng)軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),點(diǎn)、分別在橢圓上,,求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)橢圓的右焦點(diǎn)作相互垂直的兩條弦,若 的最小值為,則橢圓的離心率(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在橢圓中,左焦點(diǎn)為, 右頂點(diǎn)為, 短軸上方端點(diǎn)為,若,則該橢圓的離心率為_(kāi)__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓+y2=1的左頂點(diǎn)為A,過(guò)A作兩條互相垂直的弦AM、AN交橢圓于M、N兩點(diǎn).
(1)當(dāng)直線(xiàn)AM的斜率為1時(shí),求點(diǎn)M的坐標(biāo);
(2)當(dāng)直線(xiàn)AM的斜率變化時(shí),直線(xiàn)MN是否過(guò)x軸上的一定點(diǎn)?若過(guò)定點(diǎn),請(qǐng)給出證明,并求出該定點(diǎn);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若斜率為的直線(xiàn)l與橢圓=1(a>b>0)有兩個(gè)不同的交點(diǎn),且這兩個(gè)交點(diǎn)在x軸上的射影恰好是橢圓的兩個(gè)焦點(diǎn),則該橢圓的離心率為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若橢圓=1的焦距為2,求橢圓上的一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和.

查看答案和解析>>

同步練習(xí)冊(cè)答案