【題目】已知函數(shù)yf(x)(x∈R),對函數(shù)yg(x)(x∈R),定義g(x)關于f(x)的“對稱函數(shù)”為函數(shù)yh(x)(x∈R),yh(x)滿足:對任意的x∈R,兩個點(x,h(x)),(x,g(x))關于點(x,f(x))對稱.若h(x)是g(x)=關于f(x)=3xb的“對稱函數(shù)”,且h(x)>g(x)恒成立,則實數(shù)b的取值范圍是________

【答案】(2,+∞)

【解析】

根據(jù)“對稱函數(shù)”的定義可知, =3xb,即h(x)=6x+2b,h(x)>g(x)恒成立,等價于6x+2b,即3xb恒成立,設F(x)=3xb,m(x)=,作出兩個函數(shù)對應的圖象如圖所示,

當直線和上半圓相切時,圓心到直線的距離d=2,即|b|=2,∴b=2b=-2 (舍去),即要使h(x)>g(x)恒成立,則b>2,即實數(shù)b的取值范圍是(2,+∞).

答案:(2,+∞)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且a<b<c,
(1)求B的大;
(2)若a=2, ,求c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校在今年的自主招生考試成績中隨機抽取100名考生的筆試成績,分為5組制出頻率分布直方圖如圖所示.

組號

分組

頻數(shù)

頻率

1

5

0.05

2

35

0.35

3

4

5

10

0.1

(1)求的值.

2)該校決定在成績較好的3、4、5組用分層抽樣抽取6名學生進行面試,則每組應各抽多少名學生?

(3)在(2)的前提下,從抽到6名學生中再隨機抽取2名被甲考官面試,求這2名學生來自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方體ABCD﹣A1B1C1D1中AA1=AD=1,E為CD中點.
(Ⅰ)求證:B1E⊥AD1
(Ⅱ)在棱AA1上是否存在一點P,使得DP∥平面B1AE?若存在,求AP的長;若不存在,說明理由.
(Ⅲ)若二面角A﹣B1E﹣A1的大小為30°,求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x﹣3)>0},則A∩B=(
A.(﹣∞,﹣1)
B.(﹣1,
C.﹙ ,3﹚
D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分別是AC,AB上的點,且DE∥BC,DE=2,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2.

(1)求證:A1C⊥平面BCDE;
(2)若M是A1D的中點,求CM與平面A1BE所成角的大小;
(3)線段BC上是否存在點P,使平面A1DP與平面A1BE垂直?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln(x+1)+ax,其中aR.

a=﹣1時,求證:f(x)≤0;

對任意x2≥ex1>0,存在x(﹣1,+∞),使 成立,求a的取值范圍.(其中e是自然對數(shù)的底數(shù),e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的左右焦點分別為, ,左頂點為,上頂點為 的面積為.

(1)求橢圓的方程;

(2)設直線 與橢圓相交于不同的兩點, , 是線段的中點.若經(jīng)過點的直線與直線垂直于點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(2,8)在拋物線,直線l和拋物線交于B,C兩點,焦點F是三角形ABC的重心,MBC的中點(不在x軸上)

(1)求M點的坐標;

(2)求直線l的方程.

查看答案和解析>>

同步練習冊答案