【題目】已知函數(shù)y=f(x)(x∈R),對函數(shù)y=g(x)(x∈R),定義g(x)關于f(x)的“對稱函數(shù)”為函數(shù)y=h(x)(x∈R),y=h(x)滿足:對任意的x∈R,兩個點(x,h(x)),(x,g(x))關于點(x,f(x))對稱.若h(x)是g(x)=關于f(x)=3x+b的“對稱函數(shù)”,且h(x)>g(x)恒成立,則實數(shù)b的取值范圍是________.
科目:高中數(shù)學 來源: 題型:
【題目】某高校在今年的自主招生考試成績中隨機抽取100名考生的筆試成績,分為5組制出頻率分布直方圖如圖所示.
組號 | 分組 | 頻數(shù) | 頻率 |
1 | 5 | 0.05 | |
2 | 35 | 0.35 | |
3 | |||
4 | |||
5 | 10 | 0.1 |
(1)求的值.
2)該校決定在成績較好的3、4、5組用分層抽樣抽取6名學生進行面試,則每組應各抽多少名學生?
(3)在(2)的前提下,從抽到6名學生中再隨機抽取2名被甲考官面試,求這2名學生來自同一組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在長方體ABCD﹣A1B1C1D1中AA1=AD=1,E為CD中點.
(Ⅰ)求證:B1E⊥AD1;
(Ⅱ)在棱AA1上是否存在一點P,使得DP∥平面B1AE?若存在,求AP的長;若不存在,說明理由.
(Ⅲ)若二面角A﹣B1E﹣A1的大小為30°,求AB的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x﹣3)>0},則A∩B=( )
A.(﹣∞,﹣1)
B.(﹣1, )
C.﹙ ,3﹚
D.(3,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分別是AC,AB上的點,且DE∥BC,DE=2,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2.
(1)求證:A1C⊥平面BCDE;
(2)若M是A1D的中點,求CM與平面A1BE所成角的大小;
(3)線段BC上是否存在點P,使平面A1DP與平面A1BE垂直?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ln(x+1)+ax,其中a∈R.
(Ⅰ) 當a=﹣1時,求證:f(x)≤0;
(Ⅱ) 對任意x2≥ex1>0,存在x∈(﹣1,+∞),使 成立,求a的取值范圍.(其中e是自然對數(shù)的底數(shù),e=2.71828…)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的左右焦點分別為, ,左頂點為,上頂點為, 的面積為.
(1)求橢圓的方程;
(2)設直線: 與橢圓相交于不同的兩點, , 是線段的中點.若經(jīng)過點的直線與直線垂直于點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(2,8)在拋物線上,直線l和拋物線交于B,C兩點,焦點F是三角形ABC的重心,M是BC的中點(不在x軸上)
(1)求M點的坐標;
(2)求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com