【題目】已知函數(shù).
(1)若,討論的單調(diào)性;
(2)若,且對于函數(shù)的圖象上兩點(diǎn), ,存在,使得函數(shù)的圖象在處的切線.求證;.
【答案】(1)見解析(2)見證明
【解析】
(1)對函數(shù)求導(dǎo),分別討論,以及,即可得出結(jié)果;
(2)根據(jù)題意,由導(dǎo)數(shù)幾何意義得到,將證明轉(zhuǎn)化為證明即可,再令,設(shè) ,用導(dǎo)數(shù)方法判斷出的單調(diào)性,進(jìn)而可得出結(jié)論成立.
(1)解:易得,函數(shù)的定義域?yàn)?/span>,
,
令,得或.
①當(dāng)時,時,,函數(shù)單調(diào)遞減;
時,,函數(shù)單調(diào)遞增.
此時,的減區(qū)間為,增區(qū)間為.
②當(dāng)時,時,,函數(shù)單調(diào)遞減;
或時,,函數(shù)單調(diào)遞增.
此時,的減區(qū)間為,增區(qū)間為,.
③當(dāng)時,時,,函數(shù)單調(diào)遞增;
此時,的減區(qū)間為.
綜上,當(dāng)時,的減區(qū)間為,增區(qū)間為:
當(dāng)時,的減區(qū)間為,增區(qū)間為.;
當(dāng)時,增區(qū)間為.
(2)證明:由題意及導(dǎo)數(shù)的幾何意義,得
由(1)中得.
易知,導(dǎo)函數(shù) 在上為增函數(shù),
所以,要證,只要證,
即,即證.
因?yàn)?/span>,不妨令,則 .
所以 ,
所以在上為增函數(shù),
所以,即,
所以,即,
即.
故有(得證).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右焦點(diǎn)分別為,,若橢圓經(jīng)過點(diǎn),且的面積為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)斜率為的直線與以原點(diǎn)為圓心,半徑為的圓交于,兩點(diǎn),與橢圓交于,兩點(diǎn),且,當(dāng)取得最小值時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中, 分別是的中點(diǎn).
(1)求證: 平面;
(2)若三棱柱的體積為4,求異面直線與夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用五種不同顏色(顏色可以不全用完)給三棱柱的六個頂點(diǎn)涂色,要求每個點(diǎn)涂一種顏色,且每條棱的兩個端點(diǎn)涂不同顏色,則不同的涂色種數(shù)有( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第18屆國際籃聯(lián)籃球世界杯將于2019年8月31日至9月15日在中國北京、廣州等八座城市舉行.屆時,甲、乙、丙、丁四名籃球世界杯志愿者將隨機(jī)分到、、三個不同的崗位服務(wù),每個崗位至少有一名志愿者.
(1)求甲、乙兩人不在同一個崗位服務(wù)的概率;
(2)設(shè)隨機(jī)變量為這四名志愿者中參加崗位服務(wù)的人數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家規(guī)定,疫苗在上市前必須經(jīng)過嚴(yán)格的檢測,并通過臨床實(shí)驗(yàn)獲得相關(guān)數(shù)據(jù),以保證疫苗使用的安全和有效.某生物制品硏究所將某一型號疫苗用在動物小白鼠身上進(jìn)行科研和臨床實(shí)驗(yàn),得到統(tǒng)計(jì)數(shù)據(jù)如下:
未感染病毒 | 感染病毒 | 總計(jì) | |
未注射疫苗 | 40 | p | x |
注射疫苗 | 60 | q | y |
總計(jì) | 100 | 100 | 200 |
現(xiàn)從未注射疫苗的小白鼠中任取1只,取到“感染病毒”的小白鼠的概率為.
(1)求列聯(lián)表中的數(shù)據(jù)p,q,,的值;
(2)能否有把握認(rèn)為注射此種疫苗有效?
(3)在感染病毒的小白鼠中,按未注射疫苗和注射疫苗的比例抽取5只進(jìn)行病例分析,然后從這五只小白鼠中隨機(jī)抽取3只對注射疫苗情況進(jìn)行核實(shí),求至少抽到2只為未注射疫苗的小白鼠的概率. 附:.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某少數(shù)民族的刺繡有著悠久的歷史,下圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個圖形包含f(n)個小正方形.
(1) 求出,,并猜測的表達(dá)式;
(2) 求證:+++…+.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年被稱為“新高考元年”,隨著上海、浙江兩地順利實(shí)施“語數(shù)外+3”新高考方案,新一輪的高考改革還將繼續(xù)在全國推進(jìn)。遼寧地區(qū)也將于2020年開啟新高考模式,今年秋季入學(xué) 的高一新生將面臨從物理、化學(xué)、生物、政治、歷史、地理等6科中任選三科(共20種選法)作為 自己將來高考“語數(shù)外+3 ”新高考方案中的“3”。某地區(qū)為了順利迎接新高考改革,在某學(xué)校理科班的200名學(xué)生中進(jìn)行了“學(xué)生模擬選科數(shù)據(jù)”調(diào)查,每個學(xué)生只能從表格中的20種課程 組合選擇一種學(xué)習(xí)。模擬選課數(shù)據(jù)統(tǒng)計(jì)如下表:
序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
組合學(xué)科 | 物化生 | 物化政 | 物化歷 | 物化地 | 物生政 | 物生歷 | 物生地 |
人數(shù) | 20人 | 5人 | 10人 | 10人 | 10人 | 15人 | 10人 |
序號 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
組合學(xué)科 | 物政歷 | 物政地 | 物歷地 | 化生政 | 化生歷 | 化生地 | 化政歷 |
人數(shù) | 5人 | 0人 | 5人 | ... | 40人 | ... | ... |
序號 | 15 | 16 | 17 | 18 | 19 | 20 | |
組合學(xué)科 | 化政地 | 化歷地 | 生政歷 | 生政地 | 生歷地 | 政歷地 | 總計(jì) |
人數(shù) | ... | ... | ... | ... | ... | ... | 200人 |
為了解學(xué)生成績與學(xué)生模擬選課情之間的關(guān)系,用分層抽樣的方法從這200名學(xué)生中抽取40人的樣本進(jìn)行分析.
(1)樣本中選擇組合12號“化生歷”的有多少人?樣本中選擇學(xué)習(xí)物理的有多少人?
(2)從樣本選擇學(xué)習(xí)地理且學(xué)習(xí)物理的學(xué)生中隨機(jī)抽取3人,求這3人中至少有1人還要學(xué)習(xí)生物的概率;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某校甲、乙、丙三個年級的學(xué)生志愿者人數(shù)分別為240,160,160.現(xiàn)采用分層抽樣的方法從中抽。访瑢W(xué)去某敬老院參加獻(xiàn)愛心活動.
(Ⅰ)應(yīng)從甲、乙、丙三個年級的學(xué)生志愿者中分別抽取多少人?
(Ⅱ)設(shè)抽出的7名同學(xué)分別用A,B,C,D,E,F,G表示,現(xiàn)從中隨機(jī)抽取2名同學(xué)承擔(dān)敬老院的衛(wèi)生工作.
(i)試用所給字母列舉出所有可能的抽取結(jié)果;
(ii)設(shè)M為事件“抽取的2名同學(xué)來自同一年級”,求事件M發(fā)生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com