20.已知直線l1:2x-2y+1=0,直線l2:x+by-3=0,若l1⊥l2,則b=1;若l1∥l2,則兩直線間的距離為$\frac{7\sqrt{2}}{4}$.

分析 ①由l1⊥l2,則-$\frac{2}{-2}$×$(-\frac{1})$=-1,解得b.
②若l1∥l2,則-$\frac{2}{-2}$=-$\frac{1}$,解得b.利用平行線之間的距離公式即可得出.

解答 解:①∵l1⊥l2,則-$\frac{2}{-2}$×$(-\frac{1})$=-1,解得b=1.
②若l1∥l2,則-$\frac{2}{-2}$=-$\frac{1}$,解得b=-1.∴兩條直線方程分別為:x-y+$\frac{1}{2}$=0,x-y-3=0.
則兩直線間的距離=$\frac{|-3-\frac{1}{2}|}{\sqrt{2}}$=$\frac{7\sqrt{2}}{4}$.
故答案為:1,$\frac{7\sqrt{2}}{4}$.

點(diǎn)評 本題考查了平行與相互垂直的充要條件和平行線之間的距離公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)有序集合對(A,B)滿足:A∪B={1,2,3,4,5,6,7,8},A∩B=∅,記CardA,CardB分別表示集合A、B的元素個數(shù),則符合條件CardA∉A,CardB∉B的集合的對數(shù)是44.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知a、b、c∈R,a>b>c,a+b+c=0,若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x≥0}\\{x+y≤4}\\{bx+ay+c≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+y( 。
A.有最大值,無最小值B.無最大值,有最小值
C.有最大值,有最小值D.無最大值,無最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.用數(shù)學(xué)歸納法證明1+2+22+…+2n+1=2n+2-1(n∈N*)的過程中,在驗證n=1時,左端計算所得的項為(  )
A.1B.1+2C.1+2+22D.1+2+22+23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x)=x(x-1)(x-2)…(x-100),在x=0處的導(dǎo)數(shù)值為( 。
A.0B.1002C.200D.100×99×…×2×1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)$f(x)=sin(2x+\frac{π}{3})+sin(2x-\frac{π}{3})+cos2x+a$,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)當(dāng)$x∈[-\frac{π}{4},\frac{π}{4}]$時,恒有f(x)>0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)方程f(x,y)=0的解集非空.如果命題“坐標(biāo)滿足方程f(x,y)=0的點(diǎn)都在曲線C上”是不正確的,有下面5個命題:
①坐標(biāo)滿足f(x,y)=0的點(diǎn)都不在曲線C上;
②曲線C上的點(diǎn)的坐標(biāo)都不滿足f(x,y)=0;
③坐標(biāo)滿足f(x,y)=0的點(diǎn)不都在曲線C上;
④一定有不在曲線C上的點(diǎn),其坐標(biāo)滿足f(x,y)=0;
⑤坐標(biāo)滿足f(x,y)=0的點(diǎn)有些在曲線C上,有些不在曲線C上.
則上述命題正確的是③④.(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,過點(diǎn)A與AF2垂直的直線交x軸負(fù)半軸于點(diǎn)Q,且$2\overrightarrow{{F_1}{F_2}}+\overrightarrow{{F_2}Q}$=$\overrightarrow 0$.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)若過A,Q,F(xiàn)2三點(diǎn)的圓恰好與直線$\sqrt{7}$x-y+$\sqrt{7}$+$4\sqrt{2}$=0相切,求橢圓C的方程;
(Ⅲ)過F2的直線L與(Ⅱ)中橢圓C交于不同的兩點(diǎn)M、N,則△F1MN的內(nèi)切圓的面積是否存    在最大值?若存在,求出這個最大值及此時的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知x>0,y>0,且x2-2xy+4y2=1.
(Ⅰ)求證:x+2y≤2;
(Ⅱ)求y的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案