【題目】下列說(shuō)法:第二象限角比第一象限角大;設(shè)是第二象限角,則;三角形的內(nèi)角是第一象限角或第二象限角;函數(shù)是最小正周期為的周期函數(shù);△ABC中,若,A>B.其中正確的是___________ (寫出所有正確說(shuō)法的序號(hào))

【答案】②⑤

【解析】

①根據(jù)象限角的概念,舉反例可知錯(cuò)誤.
②對(duì) 變形,化為的三角函數(shù)式,根據(jù)三角函數(shù)值在各象限的符號(hào),判斷出差式的符號(hào)作出判斷.
③對(duì)于直角,我們說(shuō)不屬于任一象限.③錯(cuò)誤
④取,則 ,此時(shí),不為周期函數(shù).
⑤根據(jù)正弦定理,若,根據(jù)大邊對(duì)大角原則,應(yīng)有

:①由角的概念的推廣,可知①錯(cuò),比如是第二象限角,是第-象限角,但.①錯(cuò)誤
.設(shè)是第二象限角, .②正確.
③三角形的內(nèi)角可為銳角、直角或鈍角.對(duì)于直角,我們說(shuō)不屬于任一象限.③錯(cuò)誤.
④取,則 ,此時(shí),所以函數(shù)不最小正周期為的周期函數(shù).④錯(cuò)誤
⑤在中,若,根據(jù)正弦定理:,根據(jù)大邊對(duì)大角原則,應(yīng)有.⑤正確.
故答案為:②⑤.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為正方形, 底面, ,過(guò)點(diǎn)的平面與棱 , 分別交于點(diǎn), , 三點(diǎn)均不在棱的端點(diǎn)處). 

(Ⅰ)求證:平面平面;

(Ⅱ)若平面,求的值;

(Ⅲ)直線是否可能與平面平行?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三人進(jìn)行羽毛球練習(xí)賽,其中兩人比賽,另一人當(dāng)裁判,每局比賽結(jié)束時(shí),負(fù)的一方在下一局當(dāng)裁判,設(shè)各局中雙方獲勝的概率均為 ,各局比賽的結(jié)果都相互獨(dú)立,第1局甲當(dāng)裁判.
(1)求第4局甲當(dāng)裁判的概率;
(2)X表示前4局中乙當(dāng)裁判的次數(shù),求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 是雙曲線 的右焦點(diǎn),過(guò)點(diǎn) 的一條漸近線的垂線,垂足為 ,線段 相交于點(diǎn) ,記點(diǎn) 的兩條漸近線的距離之積為 ,若 ,則該雙曲線的離心率是( )
A.
B.2
C. 3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時(shí)針?lè)较驖L動(dòng),M和N是小圓的一條固定直徑的兩個(gè)端點(diǎn).那么,當(dāng)小圓這樣滾過(guò)大圓內(nèi)壁的一周,點(diǎn)M,N在大圓內(nèi)所繪出的圖形大致是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解甲、乙兩校高三年級(jí)學(xué)生某次期末聯(lián)考地理成績(jī)情況,從這兩學(xué)校中分別隨機(jī)抽取30名高三年級(jí)的地理成績(jī)(百分制)作為樣本,樣本數(shù)據(jù)的莖葉圖如圖所示:

(Ⅰ)若乙校高三年級(jí)每位學(xué)生被抽取的概率為0.15,求乙校高三年級(jí)學(xué)生總?cè)藬?shù);
(Ⅱ)根據(jù)莖葉圖,分析甲、乙兩校高三年級(jí)學(xué)生在這次聯(lián)考中地理成績(jī);
(Ⅲ)從樣本中甲、乙兩校高三年級(jí)學(xué)生地理成績(jī)不及格(低于60分為不及格)的學(xué)生中隨機(jī)抽取2人,求至少抽到一名乙校學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形, 平面,點(diǎn), 分別為, 的中點(diǎn),且, .

(1)證明: 平面

(2)設(shè)直線與平面所成角為,當(dāng)內(nèi)變化時(shí),求二面角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下四個(gè)關(guān)于圓錐曲線的命題中:

①雙曲線與橢圓有相同的焦點(diǎn);

②在平面內(nèi),設(shè)為兩個(gè)定點(diǎn),為動(dòng)點(diǎn),且,其中常數(shù)為正實(shí)數(shù),則動(dòng)點(diǎn)的軌跡為橢圓;

③方程的兩根可以分別作為橢圓和雙曲線的離心率;

④過(guò)雙曲線的右焦點(diǎn)作直線交雙曲線于兩點(diǎn),若,則這樣的直線有且僅有3條.其中真命題的序號(hào)為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知的方程為,平面內(nèi)兩定點(diǎn)、.當(dāng)的半徑取最小值時(shí):

(1)求出此時(shí)的值,并寫出的標(biāo)準(zhǔn)方程;

(2)在軸上是否存在異于點(diǎn)的另外一個(gè)點(diǎn),使得對(duì)于上任意一點(diǎn),總有為定值?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明你的理由;

(3)在第(2)問(wèn)的條件下,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案