5.兩條直線y=x+2a,y=2x+a的交點P在圓(x-1)2+(y-1)2=4的內(nèi)部,則實數(shù)a的取值范圍是( 。
A.(-$\frac{1}{5}$,1)B.(-∞,-$\frac{1}{5}$)∪(1,+∞)C.[-$\frac{1}{5}$,1)D.(-∞,-$\frac{1}{5}$]∪[1,+∞)

分析 先求出兩條直線的交點坐標,利用交點到圓心的距離小于半徑列出不等式,解出實數(shù)a的取值范圍.

解答 解:∵兩條直線y=x+2a,y=2x+a的交點P在圓(x-1)2+(y-1)2=4的內(nèi)部,
兩條直線y=x+2a,y=2x+a的交點坐標為(a,3a),∴(a-1)2+(3a-1)2<4,
∴-$\frac{1}{5}$<a<1,
故選:A.

點評 本題考查點與圓的位置關(guān)系,點在圓內(nèi)等價于點到圓心的距離小于圓的半徑.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如果函數(shù)f(x)=3sin(2x-φ)(0<φ<π)的圖象滿足f(x+$\frac{π}{6}$)=f($\frac{π}{6}$-x),則f(x)$≥\frac{3}{2}$的解集為{x|kπ+$\frac{π}{2}$≤x≤kπ+$\frac{5π}{6}$,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)向量$\overrightarrow{a}$=(5,n),且|$\overrightarrow{a}$|=13,則n=±12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知二次函數(shù)f(x)=ax2+bx+c和一次函數(shù)g(x)=-bx,其中a,b,c∈R且滿足a>b>c,f(1)=0.
(Ⅰ)證明:函數(shù)f(x)與g(x)的圖象交于不同的兩點;
(Ⅱ)若函數(shù)F(x)=f(x)-g(x)在[2,3]上的最小值為9,最大值為21,試求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)二次函數(shù),且滿足f(0)=1,f(x+1)-f(x)=2x.
(1)求解析式f(x);
(2)討論f(x)在[0,a]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若三角形ABC所在平面內(nèi)一點M滿足條件$\overrightarrow{CM}=\frac{1}{6}\overrightarrow{CB}+\frac{1}{3}\overrightarrow{CA}$,則S△MAC:S△MAB等于(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)橢圓E:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1,一組平行直線的斜率是$\frac{3}{2}$
(1)這組直線何時與橢圓相交?
(2)當它們與橢圓相交時,求它們中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.底面邊長為2,側(cè)棱長為$\sqrt{3}$的正四棱錐的體積為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.“開門大吉”是某電視臺推出的游戲益智節(jié)目.選手面對1-4號4扇大門,依次按響門上的門鈴,門鈴會播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門對應(yīng)的家庭夢想基金.正確回答每一扇門后,選手可自由選擇帶著獎金離開比賽,還可繼續(xù)挑戰(zhàn)后面的門以獲得更多獎金(獎金金額累加),但是一旦回答錯誤,獎金將清零,選手也會離開比賽.在一次場外調(diào)查中,發(fā)現(xiàn)參加比賽的選手多數(shù)分為兩個年齡段:20~30;30~40(單位:歲),其猜對歌曲名稱與否人數(shù)如圖所示.
(1)寫出2×2列聯(lián)表;判斷是否有90%的把握認為猜對歌曲名稱與否與年齡有關(guān)?說明你的理由.(下面的臨界值表供參考)
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
(參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(理)(2)若某選手能正確回答第一、二、三、四扇門的概率分別為$\frac{4}{5}$,$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{3}$,正確回答一個問題后,選擇繼續(xù)回答下一個問題的概率是$\frac{1}{2}$,且各個問題回答正確與否互不影響.設(shè)該選手所獲夢想基金總數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.
第一扇門第二扇門第三扇門第四扇門
1000200030005000
每扇門對應(yīng)的夢想基金:(單位:元)
(文)(2)現(xiàn)計劃在這次場外調(diào)查中按年齡段用分層抽樣的方法選取6名選手,并抽取3名幸運選手,求3名幸運選手中至少有一人在20~30歲之間的概率.

查看答案和解析>>

同步練習(xí)冊答案