A. | $\frac{{\sqrt{3}}}{4}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{3\sqrt{3}}}{4}$ | D. | $\sqrt{3}$ |
分析 先求出A1-ABC的體積等于$\frac{\sqrt{3}}{3}$,再利用余弦定理求出cos∠BA1C=$\frac{3}{5}$,從而sin∠BA1C=$\frac{4}{5}$,從而得到${S}_{△B{A}_{1}C}=\frac{1}{2}×\sqrt{5}×\sqrt{5}×\frac{4}{5}$=2,設點A到平面A1BC的距離為h,由${V}_{A-{A}_{1}BC}$=${V}_{{A}_{1}-ABC}$,能求出點A到平面A1BC的距離.
解答 解∵直三棱柱ABC-A1B1C1中,AB=AC=BC=2,AA1=1,
∴${S}_{△ABC}=\frac{1}{2}×2×2×sin60°$=$\sqrt{3}$,
${V}_{{A}_{1}-ABC}=\frac{1}{3}×{S}_{△ABC}×A{A}_{1}$=$\frac{1}{3}×\sqrt{3}×1$=$\frac{\sqrt{3}}{3}$,
${A}_{1}B={A}_{1}C=\sqrt{4+1}=\sqrt{5}$,
∴cos∠BA1C=$\frac{5+5-4}{2×\sqrt{5}×\sqrt{5}}$=$\frac{3}{5}$,∴sin$∠B{A}_{1}C=\sqrt{1-(\frac{3}{5})^{2}}$=$\frac{4}{5}$,
∴${S}_{△B{A}_{1}C}=\frac{1}{2}×\sqrt{5}×\sqrt{5}×\frac{4}{5}$=2,
設點A到平面A1BC的距離為h,
則${V}_{A-{A}_{1}BC}$=${V}_{{A}_{1}-ABC}$=$\frac{1}{3}{S}_{△B{A}_{1}C}•h$=$\frac{2}{3}h=\frac{\sqrt{3}}{3}$,
解得h=$\frac{\sqrt{3}}{2}$.
故選:B.
點評 本題考查點到平面的距離的求法,是中檔題,解題時要認真審題,注意等體積法、余弦定理的合理運用.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 0條 | B. | 2條 | C. | 4條 | D. | 無數條 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -1 | B. | -2 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | 8 | C. | -8 | D. | $-\frac{1}{8}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com