4.已知函數(shù)f(x)=x3+ax2+bx+c的圖象過原點,且f(x)在x=-1,x=3處取得極值.
(1)求函數(shù)f(x)的單調(diào)區(qū)間及極值;
(2)若函數(shù)y=f(x)與y=m的圖象有且僅有一個公共點,求實數(shù)m的取值范圍.

分析 (1)求出函數(shù)的導數(shù),得到x=-1,x=3是方程f′(x)=0的根,求出a,b的值,從而求出函數(shù)的單調(diào)區(qū)間和極值即可;
(2)根據(jù)函數(shù)的極值求出m的范圍即可.

解答 解:(1)函數(shù)f(x)=x3+ax2+bx+c的圖象過原點,
故f(x)=x3+ax2+bx,f′(x)=3x2+2ax+b,
且f(x)在x=-1,x=3處取得極值,
則x=-1,x=3是方程f′(x)=0的根,
故$\left\{\begin{array}{l}{-1+3=-\frac{2a}{3}}\\{-1×3=\frac{3}}\end{array}\right.$,解得:a=-3,b=-9,
f(x)=x3-3x2-9x,f′(x)=3x2-6x-9=3(x-3)(x+1),
令f′(x)>0,解得:x>3或x<-1,
令f′(x)<0,解得:-1<x<3,
故f(x)在(-∞,-1)遞增,在(-1,3)遞減,在(3,+∞)遞增,
故f(x)極大值=f(-1)=5,f(x)極小值=f(3)=-27;
(2)若函數(shù)y=f(x)與y=m的圖象有且僅有一個公共點,
由(1)得:m>5或m<-27.

點評 本題考查了求函數(shù)的單調(diào)區(qū)間和極值問題,考查函數(shù)圖象的交點問題,是一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.有一堆形狀大小相同的珠子,其中只有一粒重量比其他的輕,某同學利用科學的算法,最多兩次利用天平找出了這顆最輕的珠子,則這堆珠子最多的粒數(shù)是( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在2015年春節(jié)期間,某商場對銷售的某商品一天的投放量x及其銷量y進行調(diào)查,發(fā)現(xiàn)投放量x和銷售量y之間的一組數(shù)據(jù)如表所示:
投放量x681012
銷售量y2356
通過分析,發(fā)現(xiàn)銷售量y對投放量x具有線性相關(guān)關(guān)系.
(Ⅰ)求銷售量y對投放量x的回歸直線方程;
(Ⅱ)欲使銷售量為8,則投放量應(yīng)定為多少.(保留小數(shù)點后一位數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知下列四個命題:
①函數(shù)f(x)=1og2(x+$\sqrt{1+{x}^{2}}$),g(x)=sin3x+tanx均是奇函數(shù);
②函數(shù)f(x)=sin(x-$\frac{π}{4}$)的圖象的一個對稱中心是(-$\frac{3π}{4}$,0);
③若函數(shù)f(x)的圖象關(guān)于點(1,0)成中心對稱圖形,且滿足f(4-x)=f(x),那么f(2012)=f(2013);
④函數(shù)f(x)=1gx-cosx恰有3個零點.
其中正確命題的序號是①②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.圓x2+y2+2x+4y-3=0上到直線x+y+1=0的距離為$\sqrt{2}$的點有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)的定義域為[-1,5],部分對應(yīng)值如表:
x-1045
f(x)1221
f(x)的導函數(shù)y=f′(x)的圖象如圖所示:
下列關(guān)于函數(shù)f(x)的命題:
①函數(shù)y=f(x)是周期函數(shù);
②函數(shù)f(x)在[0,2]是減函數(shù);
③如果當x∈[-1,t]時,f(x)的最大值是2,那么t的最大值為4;
④當1<a<2時,函數(shù)y=f(x)-a有4個零點.
⑤函數(shù)y=f(x)-a的零點個數(shù)可能為0,1,2,3,4.
其中正確命題的個數(shù)是( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)f(x)=e|x|+x2,且f(3a-2)>f(a-1),則實數(shù)a的取值范圍為( 。
A.(0,$\frac{1}{2}$)∪($\frac{3}{4}$,+∞)B.(-∞,$\frac{1}{2}$)∪($\frac{3}{4}$,+∞)C.($\frac{1}{2}$,+∞)D.(-∞,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,正四棱錐P-ABCD中底面邊長為2$\sqrt{2}$,側(cè)棱PA與底面ABCD所成角的正切值為$\frac{{\sqrt{6}}}{2}$.
(1)求正四棱錐P-ABCD的外接球半徑;
(2)若E是PB中點,求異面直線PD與AE所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知等比數(shù)列{an}的前n項和為Sn,公比q>0,S2=2a2-2,S3=a4-2
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\left\{\begin{array}{l}\frac{{{{log}_2}{a_n}}}{{{n^2}({n+2})}}n為奇數(shù)\\ \frac{n}{a_n}\;\;n為偶數(shù)\end{array}$,Tn為{bn}的前n項和,求Tn

查看答案和解析>>

同步練習冊答案