從某校隨機(jī)抽取100名學(xué)生,獲得了他們一周課外閱讀時(shí)間(單位:小時(shí))的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表和頻率分布直方圖:
排號(hào)分組頻數(shù)
1[0,2)6
2[2,4)8
3[4,6)17
4[6,8)22
5[8,10)25
6[10,12)12
7[12,14)6
8[14,16)2
9[16,18)2
合計(jì)100
(Ⅰ)從該校隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生該周課外閱讀時(shí)間少于12小時(shí)的概率;
(Ⅱ)求頻率分布直方圖中的a,b的值;
(Ⅲ)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,試估計(jì)樣本中的100名學(xué)生該周課外閱讀時(shí)間的平均數(shù)在第幾組(只需寫(xiě)結(jié)論)
考點(diǎn):頻率分布直方圖,頻率分布表
專(zhuān)題:概率與統(tǒng)計(jì)
分析:(Ⅰ)根據(jù)頻率分布表求出1周課外閱讀時(shí)間少于12小時(shí)的頻數(shù),再根據(jù)頻率=
頻數(shù)
樣本容量
求頻率;
(Ⅱ)根據(jù)小矩形的高=
頻率
組距
求a、b的值;
(Ⅲ)利用平均數(shù)公式求得數(shù)據(jù)的平均數(shù),可得答案.
解答: 解:(Ⅰ)由頻率分布表知:1周課外閱讀時(shí)間少于12小時(shí)的頻數(shù)為6+8+17+22+25+12=90,
∴1周課外閱讀時(shí)間少于12小時(shí)的頻率為
90
100
=0.9;
(Ⅱ)由頻率分布表知:數(shù)據(jù)在[4,6)的頻數(shù)為17,∴頻率為0.17,∴a=0.085;
數(shù)據(jù)在[8,10)的頻數(shù)為25,∴頻率為0.25,∴b=0.125;
(Ⅲ)數(shù)據(jù)的平均數(shù)為1×0.06+3×0.08+5×0.17+7×0.22+9×0.25+11×0.12+13×0.06+15×0.02+17×0.02=7.68(小時(shí)),
∴樣本中的100名學(xué)生該周課外閱讀時(shí)間的平均數(shù)在第四組.
點(diǎn)評(píng):本題考查了頻率分布表與頻率分布直方圖,再頻率分布直方圖中頻率=小矩形的面積=小矩形的高×組距=
頻數(shù)
樣本容量
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓O:x2+y2=1和點(diǎn)A(-2,0),若定點(diǎn)B(b,0)(b≠-2)和常數(shù)λ滿(mǎn)足:對(duì)圓O上任意一點(diǎn)M,都有|MB|=λ|MA|,則:
(Ⅰ)b=
 
;
(Ⅱ)λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F是雙曲線(xiàn)
x2
a2
-
y2
b2
=1的焦點(diǎn),過(guò)F作雙曲線(xiàn)一條漸近線(xiàn)的垂線(xiàn),與兩條漸近線(xiàn)交于P,Q,若
FP
=3
FQ
,則雙曲線(xiàn)的離心率為( 。
A、
6
2
B、
5
2
C、
3
D、
10
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市為了考核甲、乙兩部門(mén)的工作情況,隨機(jī)訪(fǎng)問(wèn)了50位市民,根據(jù)這50位市民對(duì)兩部門(mén)的評(píng)分(評(píng)分越高表明市民的評(píng)價(jià)越高)繪制的莖葉圖如圖:

(Ⅰ)分別估計(jì)該市的市民對(duì)甲、乙兩部門(mén)評(píng)分的中位數(shù);
(Ⅱ)分別估計(jì)該市的市民對(duì)甲、乙兩部門(mén)的評(píng)分高于90的概率;
(Ⅲ)根據(jù)莖葉圖分析該市的市民對(duì)甲、乙兩部門(mén)的評(píng)價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=
n2+n
2
,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=2an+(-1)nan,求數(shù)列{bn}的前2n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

π為圓周率,e=2.71828…為自然對(duì)數(shù)的底數(shù).
(Ⅰ)求函數(shù)f(x)=
lnx
x
的單調(diào)區(qū)間;
(Ⅱ)求e3,3e,eπ,πe,3π,π3這6個(gè)數(shù)中的最大數(shù)與最小數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某企業(yè)有甲、乙兩個(gè)研發(fā)小組,為了比較他們的研發(fā)水平,現(xiàn)隨機(jī)抽取這兩個(gè)小組往年研發(fā)新產(chǎn)品的結(jié)果如下:
(a,b),(a,
.
b
),(a,b),(
.
a
,b),(
.
a
,
.
b
),(a,b),(a,b),(a,
.
b
),
.
a
,b),(a,
.
b
),(
.
a
,
.
b
),(a,b),(a,
.
b
),(
.
a
,b)(a,b)
其中a,
.
a
分別表示甲組研發(fā)成功和失敗,b,
.
b
分別表示乙組研發(fā)成功和失。
(Ⅰ)若某組成功研發(fā)一種新產(chǎn)品,則給該組記1分,否則記0分,試計(jì)算甲、乙兩組研發(fā)新產(chǎn)品的成績(jī)的平均數(shù)和方差,并比較甲、乙兩組的研發(fā)水平;
(Ⅱ)若該企業(yè)安排甲、乙兩組各自研發(fā)一樣的產(chǎn)品,試估計(jì)恰有一組研發(fā)成功的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn滿(mǎn)足Sn2-(n2+n-3)Sn-3(n2+n)=0,n∈N*
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)證明:對(duì)一切正整數(shù)n,有
1
a1(a1+1)
+
1
a2(a2+1)
+…+
1
an(an+1)
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知4a=2,lgx=a,則x=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案