16.已知函數(shù)$f(x)=\left\{\begin{array}{l}|lgx|,0<x≤10\\-\frac{1}{2}x+6,x>10.\end{array}\right.$,若x1<x2<x3,且f(x1)=f(x2)=f(x3),則x1x2x3的取值范圍是( 。
A.(1,10)B.(10,12)C.N1D.(20,24)

分析 作函數(shù)$f(x)=\left\{\begin{array}{l}|lgx|,0<x≤10\\-\frac{1}{2}x+6,x>10.\end{array}\right.$的圖象,從而結(jié)合圖象可知lgx1=lgx2=-$\frac{1}{2}$x3+6,從而求得.

解答 解:作函數(shù)$f(x)=\left\{\begin{array}{l}|lgx|,0<x≤10\\-\frac{1}{2}x+6,x>10.\end{array}\right.$的圖象如下,
,
∵x1<x2<x3,f(x1)=f(x2)=f(x3),
∴-lgx1=lgx2=-$\frac{1}{2}$x3+6,
∴x1x2=1,10<x3<12,
∴10<x1x2x3<12.
故選:B.

點評 本題考查了分段函數(shù)的性質(zhì)的綜合應(yīng)用及數(shù)形結(jié)合的思想應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,A=60°,BC=$\sqrt{10}$,D是AB邊上的一點,CD=$\sqrt{2}$,△CBD的面積為1,則BD的長為(  )
A.$\frac{3}{2}$B.4C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}的前n項和為Sn,且a1=0,nan+1=Sn+n(n+1).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足an+log3n=log3bn,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.根據(jù)下列條件,求曲線的標準方程
(1)a=2,一個焦點為(4,0)的雙曲線的標準方程
(2)焦點F在直線l:3x-2y-6=0上的拋物線的標準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)a,b,c是△ABC內(nèi)角A,B,C所對的邊,且$a=bcosC+\frac{{\sqrt{3}}}{3}csinB$.
(1)求B;
(2)若b=2,△ABC的面積為$\sqrt{3}$,求a,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖是腰長為2的兩個等腰直角三角形,則該幾何體外接球的體積為(  )
A.$4\sqrt{3}$B.$4\sqrt{3}π$C.24πD.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知$\overrightarrow m=(sin(x-\frac{π}{3})\;,\;1)\;,\;\overrightarrow n=(cosx\;,\;1)$
(1)若$\overrightarrow{m}$∥$\overrightarrow{n}$,求tanx值
(2)若函數(shù)f(x)=$\overrightarrow m•\overrightarrow n$,$x∈[{0\;,\;\frac{π}{2}}]$,求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列各組函數(shù)表示相同函數(shù)的是( 。
A.f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2B.f(x)=1,g(x)=x2
C.f(x)=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$,g(t)=|t|D.f(x)=x+1,g(x)=$\frac{{x}^{2}-1}{x-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=4+2ax-1(a>0且a≠1)的圖象恒過定點P,則點P的坐標是( 。
A.(1,6)B.(1,5)C.(0,5)D.(5,0)

查看答案和解析>>

同步練習(xí)冊答案