【題目】已知橢圓的離心率為,點上.

(1) 求橢圓的方程;

(2) 分別是橢圓的上、下焦點,過的直線與橢圓交于不同的兩點,求的內(nèi)切圓的半徑的最大值.

【答案】(1);(2)

【解析】

1)根據(jù)題意得e因為點橢圓C上,所以,b2a2c2,①②③組成方程組,解得a,b,c,進而可以寫出橢圓方程;

2)因為,所以,所以4a×rc×||,所以r||,設直線l方程為ykx,Ax1,y1),Bx2,y2),聯(lián)立直線l與橢圓的方程得(k2+4x22 kx10,由韋達定理得出||的最大值,即可求出答案.

解:(1)根據(jù)題意得e

因為點在橢圓C上,所以

b2a2c2,

①②③組成方程組,解得a24,b21,c23

所以橢圓方程為

2)設直線l方程為ykx, Ax1y1),Bx2,y2),

因為,

所以,

所以4a×rc×||,

所以r||,

聯(lián)立直線l與橢圓的方程得(k2+4x22 kx10,

所以,,

所以||,

444,

由基本不等式得(k2+126(當且僅當,即k22,取“=”),

所以||,

rmax

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)閱兵領導小組辦公室介紹,2019年國慶70周年閱兵有59個方()隊和聯(lián)合軍樂團,總規(guī)模約15萬人,是近幾次閱兵中規(guī)模最大的一次.其中,徒步方隊15個.為了保證閱兵式時隊列保持整齊,各個方隊對受閱隊員的身高也有著非常嚴格的限制,太高或太矮都不行.徒步方隊隊員,男性身高普遍在175cm185cm之間;女性身高普遍在163cm175cm之間,這是常規(guī)標準.要求最為嚴格的三軍儀仗隊,其隊員的身高一般都在184cm190cm之間.經(jīng)過隨機調(diào)查某個閱兵陣營中女子100人,得到她們身高的直方圖,如圖,記C為事件:某一閱兵女子身高不低于169cm,根據(jù)直方圖得到P(C)的估計值為05

(1)求直方圖中ab的值;

(2)估計這個陣營女子身高的平均值 (同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,圓的參數(shù)方程為是參數(shù),是大于0的常數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,圓的極坐標方程為.

1)求圓的極坐標方程和圓的直角坐標方程;

2)分別記直線,與圓、圓的異于原點的交點為,,若圓與圓外切,試求實數(shù)的值及線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙三家企業(yè)產(chǎn)品的成本分別為1000012000,15000,其成本構成如下圖所示,則關于這三家企業(yè)下列說法錯誤的是(

A.成本最大的企業(yè)是丙企業(yè)B.費用支出最高的企業(yè)是丙企業(yè)

C.支付工資最少的企業(yè)是乙企業(yè)D.材料成本最高的企業(yè)是丙企業(yè)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,將曲線為參數(shù))上任意一點經(jīng)過伸縮變換后得到曲線的圖形.以坐標原點為極點,x軸的非負半軸為極軸,取相同的單位長度建立極坐標系,已知直線

1)求曲線的普通方程和直線的直角坐標方程;

2)點P為曲線上的任意一點,求點P到直線的距離的最大值及取得最大值時點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市有東、西、南、北四個進入城區(qū)主干道的入口,在早高峰時間段,時常發(fā)生交通擁堵,交警部門記錄了11月份30天內(nèi)的擁堵情況(如下表所示,其中表示擁堵,表示通暢).假設每個人口是否發(fā)生擁堵相互獨立,將各入口在這30天內(nèi)擁堵的頻率代替各入口每天擁堵的概率.

11.1

11.2

11.3

11.4

11.5

11.6

11.7

11.8

11.9

11.10

11.11

11.12

11.13

11.14

11.15

東入口

西入口

南入口

北入口

11.16

11.17

11.18

11.19

11.20

11.21

11.22

11.23

11.24

11.25

11.26

11.27

11.28

11.29

11.30

東入口

p>

西入口

南入口

北入口

1)分別求該城市一天中早高峰時間段這四個主干道的入口發(fā)生擁堵的概率.

2)各人口一旦出現(xiàn)擁堵就需要交通協(xié)管員來疏通,聘請交通協(xié)管員有以下兩種方案可供選擇.方案一:四個主干道入口在早高峰時間段每天各聘請一位交通協(xié)管員,聘請每位交通協(xié)管員的日費用為,且)元.方案二:在早高峰時間段若某主干道入口發(fā)生擁堵,交警部門則需臨時調(diào)派兩位交通協(xié)管員協(xié)助疏通交通,調(diào)派后當日需給每位交通協(xié)管員的費用為200.以四個主干道入口聘請交通協(xié)管員的日總費用的數(shù)學期望為依據(jù),你認為在這兩個方案中應該如何選擇?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學進行自主招生測試,需要對邏輯思維和閱讀表達進行能力測試.學校對參加測試的200名學生的邏輯思維成績、閱讀表達成績以及這兩項的總成績進行了排名.其中甲、乙、丙三位同學的排名情況如圖所示,下列敘述正確的是(

A.甲同學的邏輯思維成績排名比他的閱讀表達成績排名更靠前

B.乙同學的邏輯思維成績排名比他的閱讀表達成績排名更靠前

C.甲、乙、丙三位同學的邏輯思維成績排名中,甲同學更靠前

D.甲同學的總成績排名比丙同學的總成績排名更靠前

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某市郊外景區(qū)內(nèi)一條筆直的公路經(jīng)過三個景點、、,景區(qū)管委會又開發(fā)了風景優(yōu)美的景點,經(jīng)測量景點位于景點的北偏東方向處,位于景點的正北方向,還位于景點的北偏西方向上,已知.

1)景區(qū)管委會準備由景點向景點修建一條筆直的公路,不考慮其他因素,求出這條公路的長;(結果精確到

2)求景點與景點之間的距離.(結果精確到

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,為直角梯形,,,平面平面,是以為斜邊的等腰直角三角形,,上一點,且.

1)證明:直線平面;

2)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案