精英家教網 > 高中數學 > 題目詳情

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,直線的參數方程為為參數),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,并使得它與直角坐標系有相同的長度單位,曲線的極坐標方程為

(1)求直線的普通方程和曲線的直角坐標方程;

(2)設曲線與直線交于、兩點,且點的坐標為,求的值.

【答案】(1), (2)9

【解析】試題分析:(1)對直線的參數方程消參即可得直線的普通方程,根據即可得曲線的直角坐標方程;(2)將直線方程轉化為標準形式的參數方程代入到曲線的直角坐標方程,結合韋達定理即可求出的值.

試題解析:(1) ,

,所以的普通方程是

(2)將直線方程轉化為標準形式的參數方程 為參數),

代入中得: , .

對應的參數分別為, ,則,則

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知

(1)證明: 圖象恒在直線的上方;

(2)若恒成立,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“過大年,吃水餃”是我國不少地方過春節(jié)的一大習俗,2018年春節(jié)前夕, 市某質檢部門隨機抽取了100包某種品牌的速凍水餃,檢測其某項質量指標.

(1)求所抽取的100包速凍水餃該項質量指標值的樣本平均數(同一組中的數據用該組區(qū)間的中點值作代表);

(2)①由直方圖可以認為,速凍水餃的該項質量指標值服從正態(tài)分布,利用該正態(tài)分布,求落在內的概率;

②將頻率視為概率,若某人從某超市購買了4包這種品牌的速凍水餃,記這4包速凍水餃中這種質量指標值位于內的包數為,求的分布列和數學期望.

附:①計算得所抽查的這100包速凍水餃的質量指標的標準差為;

②若,則,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,棱底面,且, , , 的中點.

(1)求證: 平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,棱底面,且, , , 的中點.

(1)求證: 平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市縣鄉(xiāng)教師流失現(xiàn)象非常嚴重,為了縣鄉(xiāng)孩子們能接受良好教育,某市今年要為兩所縣鄉(xiāng)中學招聘儲備未來三年的教師,現(xiàn)在每招聘一名教師需要1萬元,若三年后教師嚴重短缺時再招聘,由于各種因素,則每招聘一名教師需要3萬元,已知現(xiàn)在該市縣鄉(xiāng)中學無多余教師,為決策應招聘多少縣鄉(xiāng)教師搜集并整理了該市50所縣鄉(xiāng)中學在過去三年內的教師流失數,得到如表的頻率分布表:

流失教師數

6

7

8

9

頻數

10

15

15

10

以這50所縣鄉(xiāng)中學流失教師數的頻率代替一所縣鄉(xiāng)中學流失教師數發(fā)生的概率,記表示兩所縣鄉(xiāng)中學在過去三年共流失的教師數, 表示今年為兩所縣鄉(xiāng)中學招聘的教師數.為保障縣鄉(xiāng)孩子教育不受影響,若未來三年內教師有短缺,則第四年馬上招聘.

(1)求的分布列;

(2)若要求,確定的最小值;

(3)以未來四年內招聘教師所需費用的期望值為決策依據,在之中選其一,應選用哪個?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地戶家庭的年收入(萬元)和年飲食支出 (萬元)的統(tǒng)計資料如下表:

(1)求關于的線性回歸方程;(結果保留到小數點后為數字)

(2)利用(1)中的回歸方程,分析這戶家庭的年飲食支出的變化情況,并預測該地年收入 萬元的家庭的年飲食支出.(結果保留到小數點后位數字)

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐的底面是直角梯形, ,

,點在線段上,且, , 平面.

1)求證:平面平面

2)當四棱錐的體積最大時,求四棱錐的表面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數, 的圖象在處的切線方程為.

(1)求函數的單調區(qū)間與極值;

(2)若存在實數,使得成立,求整數的最小值.

查看答案和解析>>

同步練習冊答案