自變量變到 (>)時,函數(shù)值的增量與相應(yīng)自變量的增量之比是函數(shù)( )
A. 在區(qū)間[,]上的平均變化率 B. 在處的變化率
C. 在處的變化量 D.在區(qū)間[,]上的導(dǎo)數(shù)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
現(xiàn)有4人去旅游,旅游地點(diǎn)有A、B兩個地方可以選擇。但4人都不知道去哪里玩,于是決定通過擲一枚質(zhì)地均勻的骰子決定自己去哪里玩,擲出能被3整除的數(shù)時去A地,擲出其他的則去B地;
(1)求這4個人中恰好有1個人去B地的概率;
(2)求這4個人中去A地的人數(shù)大于去B地的人數(shù)的概率;
(3)用X,Y分別表示這4個人中去A、B兩地的人數(shù),記.求隨機(jī)變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
命題:“若空間兩條直線a,b分別垂直于平面α,則a∥b.”學(xué)生小夏這樣證明:設(shè)a,b與面α分別相交于A,B,連接A,B.
∵a⊥α,b⊥α,ABα,①
∴a⊥AB,b⊥AB,②
∴a∥b.③
這里的證明有兩個推理,p:①②,q:②③,則下列命題為真命題的是( ).
A.p∧q B.p∨q
C.p∨q D.(p)∧(q)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某校高二(6)班學(xué)生每周用于數(shù)學(xué)學(xué)習(xí)的時間x(單位:小時)與數(shù)學(xué)成績y(單位:分)構(gòu)成如下數(shù)據(jù)(15,79),(23,97),(16,64),(24,92),(12,58).求得的回歸直線方程為=2.5x+,則某同學(xué)每周學(xué)習(xí)20小時,估計(jì)數(shù)學(xué)成績約為多少分?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
函數(shù)f(x)=(x-3)ex的單調(diào)遞增區(qū)間是 ( )
A.(-∞,2) B.(0,3)
C.(1,4) D.(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如果函數(shù)y=f(x)的導(dǎo)函數(shù)的圖象如圖所示,給出下列判斷:
①函數(shù)y=f(x)在區(qū)間內(nèi)單調(diào)遞增;
②函數(shù)y=f(x)在區(qū)間內(nèi)單調(diào)遞減;
③函數(shù)y=f(x)在區(qū)間(4,5)內(nèi)單調(diào)遞增;
④當(dāng)x=2時,函數(shù)y=f(x)有極小值;
⑤當(dāng)x=-時,函數(shù)y=f(x)有極大值.
則上述判斷正確的是________.(填序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com