1.在空間直角坐標(biāo)系中,A(1,-3,1)與B(2,0,-4)之間的距離是$\sqrt{35}$.

分析 直接利用空間距離公式求解即可.

解答 解:在空間直角坐標(biāo)系中,A(1,-3,1)與B(2,0,-4)之間的距離是:$\sqrt{{(1-2)}^{2}+{(-3-0)}^{2}+{(1+4)}^{2}}$=$\sqrt{35}$.
故答案為:$\sqrt{35}$.

點(diǎn)評 本題考查空間距離公式的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知△ABC的頂點(diǎn)是A(0,6),B(2,0),C(4,4).
(Ⅰ)求經(jīng)過兩邊AB和AC中點(diǎn)的直線的方程;
(Ⅱ)求BC邊的垂直平分線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.用一張正方形的包裝紙把一個(gè)棱長為1的正方體完全包住,要求不能將正方形紙撕開,則所需包裝紙的最小面積為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)集$P=\left\{{1,\frac{a},b}\right\}$,數(shù)集Q={0,a+b,b2},且P=Q,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.直線x-y+6=0被圓(x+2)2+y2=16截得的弦長等于( 。
A.$2\sqrt{2}$B.$3\sqrt{2}$C.$4\sqrt{2}$D.$12\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知復(fù)數(shù)$z=\frac{2+4i}{1-i}$(i為虛數(shù)單位),則z的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)點(diǎn)的坐標(biāo)是( 。
A.(3,3)B.(-1,3)C.(3,-1)D.(-1,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.己知直線l經(jīng)過定點(diǎn)(0,1),曲線C的方程是y2=4x,試討論直線l與C的交點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若集合A={x|log2x≤-2},則∁RA=( 。
A.$({\frac{1}{4},+∞})$B.$(-∞,0]∪({\frac{1}{4},+∞})$C.$(-∞,0]∪[{\frac{1}{4},+∞})$D.[$\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)=\frac{{{2^x}+b}}{{{2^x}+a}}$,且$f(1)=\frac{1}{3}$,f(0)=0
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的值域;
(3)求證:方程f(x)=lnx至少有一根在區(qū)間(1,3).

查看答案和解析>>

同步練習(xí)冊答案