【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,且2cosAcosC(tanAtanC﹣1)=1.
(Ⅰ)求B的大小;
(Ⅱ)若 , ,求△ABC的面積.
【答案】解:(Ⅰ)由2cosAcosC(tanAtanC﹣1)=1得:2cosAcosC( ﹣1)=1, ∴2(sinAsinC﹣cosAcosC)=1,即cos(A+C)=﹣ ,
∴cosB=﹣cos(A+C)= ,
又0<B<π,
∴B= ;
(Ⅱ)由余弦定理得:cosB= = ,
∴ = ,
又a+c= ,b= ,
∴ ﹣2ac﹣3=ac,即ac= ,
∴S△ABC= acsinB= × × =
【解析】(Ⅰ)已知等式括號中利用同角三角函數間基本關系切化弦,去括號后利用兩角和與差的余弦函數公式化簡,再由誘導公式變形求出cosB的值,即可確定出B的大小;(Ⅱ)由cosB,b的值,利用余弦定理列出關系式,再利用完全平方公式變形,將a+b以及b的值代入求出ac的值,再由cosB的值,利用三角形面積公式即可求出三角形ABC面積.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若其圖象向右平移 個單位后得到的函數為奇函數,則函數y=f(x)的圖象( )
A.關于點( ,0)對稱
B.關于直線x= 對稱
C.關于點( ,0)對稱
D.關于直線x= 對稱
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】商丘市大型購物中心——萬達廣場將于2018年7月6日全面開業(yè),目前正處于試營業(yè)階段,某按摩椅經銷商為調查顧客體驗按摩椅的時間,隨機調查了50名顧客,體驗時間(單位:分鐘)落在各個小組的頻數分布如下表:
體驗 時間 | |||||||
頻數 |
(1)求這名顧客體驗時間的樣本平均數,中位數,眾數;
(2)已知體驗時間為的顧客中有2名男性,體驗時間為的顧客中有3名男性,為進一步了解顧客對按摩椅的評價,現隨機從體驗時間為和的顧客中各抽一人進行采訪,求恰抽到一名男性的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】鷹潭市龍虎山花語世界位于中國第八處世界自然遺產,世界地質公元、國家自然文化雙遺產地、國家AAAAA級旅游景區(qū)﹣﹣龍虎山主景區(qū)排衙峰下,是一座獨具現代園藝風格的花卉公園,園內匯集了3000余種花卉苗木,一年四季姹紫嫣紅花香四溢.花園景觀融合法、英、意、美、日、中六大經典園林風格,景觀設計唯美新穎.玫瑰花園、香草花溪、臺地花海、植物迷宮、兒童樂園等景點錯落有致,交相呼應又自成一體,是世界園藝景觀的大展示.該景區(qū)自2015年春建成試運行以來,每天游人如織,郁金香、向日葵、虞美人等賞花旺季日入園人數最高達萬人.某學校社團為了解進園旅客的具體情形以及采集旅客對園區(qū)的建議,特別在2017年4月1日賞花旺季對進園游客進行取樣調查,從當日12000名游客中抽取100人進行統(tǒng)計分析,結果如下:(表一)
年齡 | 頻數 | 頻率 | 男 | 女 |
[0,10) | 10 | 0.1 | 5 | 5 |
[10,20) | ① | ② | ③ | ④ |
[20,30) | 25 | 0.25 | 12 | 13 |
[30,40) | 20 | 0.2 | 10 | 10 |
[40,50) | 10 | 0.1 | 6 | 4 |
[50,60) | 10 | 0.1 | 3 | 7 |
[60,70) | 5 | 0.05 | 1 | 4 |
[70,80) | 3 | 0.03 | 1 | 2 |
[80,90) | 2 | 0.02 | 0 | 2 |
合計 | 100 | 1.00 | 45 | 55 |
(1)完成表格一中的空位①﹣④,并在答題卡中補全頻率分布直方圖,并估計2017年4月1日當日接待游客中30歲以下人數.
(2)完成表格二,并問你能否有97.5%的把握認為在觀花游客中“年齡達到50歲以上”與“性別”相關?
50歲以上 | 50歲以下 | 合計 | |
男生 | |||
女生 | |||
合計 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:k2= ,其中n=a+b+c+d)
(3)按分層抽樣(分50歲以上與50以下兩層)抽取被調查的100位游客中的10人作為幸運游客免費領取龍虎山內部景區(qū)門票,再從這10人中選取2人接受電視臺采訪,設這2人中年齡在50歲以上(含)的人數為ξ,求ξ的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校高三年級有學生500人,其中男生300人,女生200人,為了研究學生的數學成績是否與性別有關,現采用分層抽樣的方法,從中抽取了100名學生,先統(tǒng)計了他們期中考試的數學分數,然后按性別分為男、女兩組,再將兩組學生的分數分成5組:[100,110),[110,120),[120,130),[130,140),[140,150]分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
(1)從樣本中分數小于110分的學生中隨機抽取2人,求兩人恰好為一男一女的概率;
(2)若規(guī)定分數不小于130分的學生為“數學尖子生”,請你根據已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認為“數學尖子生與性別有關”?
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
附:K2= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為迎接2022年北京冬季奧運會, 某校開設了冰球選修課,12名學生被分成甲、乙兩組進行訓練.他們的身高(單位:cm)如下圖所示:
設兩組隊員身高平均數依次為,,方差依次為,,則下列關系式中完全正確的是( )
A. =, =B. <,>
C. <,=D. <,<
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com