【題目】某學校要對如圖所示的5個區(qū)域進行綠化(種花),現(xiàn)有4種不同顏色的花供選擇,要求相鄰區(qū)域不能種同一種顏色的花,則共有___________種不同的種花方法.

【答案】72

【解析】分析: 根據(jù)題意,分4步進行分析:依次分析區(qū)域1、2、3、4和5的著色方法數(shù)目,由分步計數(shù)原理計算可得答案.

詳解:根據(jù)題意,分4步進行分析:

,對于區(qū)域1,有4種顏色可選,即有4種著色方法,

,對于區(qū)域2,與區(qū)域1相鄰,有3種顏色可選,即有3種著色方法,

,對于區(qū)域3,與區(qū)域1、2相鄰,有2種顏色可選,即有2種著色方法,

,對于區(qū)域4,若其顏色與區(qū)域2的相同,區(qū)域5有2種顏色可選,

若其顏色與區(qū)域2的不同,區(qū)域4有1種顏色可選,區(qū)域5有1種顏色可選,

則區(qū)域4、5共有2+1=3種著色方法;

則一共有4×3×2×(1+2)=72種著色方法;

故答案為:72

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)為偶函數(shù),求的值;

(2)若,求函數(shù)的單調遞增區(qū)間;

(3)當時,若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= , g(x)=ex+m , 其中e=2.718….
(1)求f(x)在x=1處的切線方程;
(2)當m≥﹣2時,證明:f(x)<g(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+ax2﹣3ax+1的圖象經(jīng)過四個象限,則實數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某旅游景點預計2013年1月份起前x個月的旅游人數(shù)的和p(x)(單位:萬人)與x的關系近似地滿足p(x)=x(x+1)(39﹣2x),(x∈N* , 且x≤12).已知第x月的人均消費額q(x)(單位:元)與x的近似關系是q(x)=
(I)寫出2013年第x月的旅游人數(shù)f(x)(單位:萬人)與x的函數(shù)關系式;
(II)試問2013年第幾月旅游消費總額最大,最大月旅游消費總額為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二面角α﹣l﹣β為60°,ABα,AB⊥l,A為垂足,CDβ,C∈l,∠ACD=135°,則異面直線AB與CD所成角的余弦值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示四棱錐中,底面,四邊形中,,,,

求四棱錐的體積;

求證:平面;

在棱上是否存在點異于點,使得平面,若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校藝術節(jié)對同一類的,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“,兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù).比如:

他們研究過圖1中的1,3,6,10,…,由于這些數(shù)能夠表示成三角形,將其稱為三角形數(shù);類似的,稱圖2中的1,4,9,16,…這樣的數(shù)為正方形數(shù).下列數(shù)中既是三角形數(shù)又是正方形數(shù)的是( )

A. 36 B. 45 C. 99 D. 100

查看答案和解析>>

同步練習冊答案