【題目】已知向量(cosx,sinx)(cosx,﹣sinx),函數(shù)

1)若,x(0,),求tan(x)的值;

2)若,(,),,(0,),求的值.

【答案】1)-2;(2

【解析】

1)由向量(cosx,sinx),(cosx,-sinx),利用數(shù)量積運算得到f(x)cos2x,根據(jù)f()1,求得cosx,得到x,然后利用兩角和的正切公式求解.

2)由f(α)=-,得到cos2α=-,進而得到sin2α=-,再由sinβ,得到 cosβ, 然后利用兩角和的余弦公式求解.

1)因為向量(cosx,sinx),(cosx,-sinx),

所以f(x)·cos2xsin2xcos2x

因為f()1,

所以cosx1,

cosx

又因為x(0,π)

所以x,

所以tan(x)tan()=-2

2)若f(α)=-,則cos2α=-,即cos2α=-

因為α(),

所以2α,),

所以sin2α=-=-

因為sinβ,β(0,),

所以cosβ,

所以cos(2αβ)cos2αcosβsin2αsinβ((

又因為2α),β(0,)

所以2αβ,2π),

所以2αβ的值為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】2019新型冠狀病毒感染的肺炎的傳播有飛沫、氣溶膠、接觸等途徑,為了有效抗擊疫情,隔離性防護是一項具體有效措施.某市為有效防護疫情,宣傳居民盡可能不外出,鼓勵居民的生活必需品可在網(wǎng)上下單,商品由快遞業(yè)務公司統(tǒng)一配送(配送費由政府補貼).快遞業(yè)務主要由甲公司與乙公司兩家快遞公司承接:“快遞員”的工資是“底薪+送件提成”.這兩家公司對“快遞員”的日工資方案為:甲公司規(guī)定快遞員每天底薪為70元,每送件一次提成1元;乙公司規(guī)定快遞員每天底薪為120元,每日前83件沒有提成,超過83件部分每件提成5元,假設(shè)同一公司的快遞員每天送件數(shù)相同,現(xiàn)從這兩家公司往年忙季各隨機抽取一名快遞員并調(diào)取其100天的送件數(shù),得到如下條形圖:

1)求乙公司的快遞員一日工資y(單位:元)與送件數(shù)n的函數(shù)關(guān)系;

2)若將頻率視為概率,回答下列問題:

①記甲公司的“快遞員”日工資為X(單位:元).求X的分布列和數(shù)學期望;

②小王想到這兩家公司中的一家應聘“快遞員”的工作,如果僅從日收入的角度考慮,請你利用所學過的統(tǒng)計學知識為他作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前n項和為.數(shù)列為非負的等比數(shù)列,且滿足,

(Ⅰ)求數(shù)列,的通項公式;

(Ⅱ)若數(shù)列的前n項和為,求數(shù)列的前n項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形,,,是等邊三角形,側(cè)面底面,,,,點是棱上靠近點的一個三等分點.

1)求證:∥平面;

2)設(shè)點是線段(含端點)上的動點,若直線與底面所成的角的正弦值為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動支付已成為主要支付方式之一.為了解某校學生上個月A,B兩種移動支付方式的使用情況,從全校所有的1000名學生中隨機抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學生的支付金額分布情況如下:

支付金額

支付方式

不大于2000

大于2000

僅使用A

27

3

僅使用B

24

1

(Ⅰ)估計該校學生中上個月A,B兩種支付方式都使用的人數(shù);

(Ⅱ)從樣本僅使用B的學生中隨機抽取1人,求該學生上個月支付金額大于2000元的概率;

(Ⅲ)已知上個月樣本學生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用B的學生中隨機抽查1人,發(fā)現(xiàn)他本月的支付金額大于2000元.結(jié)合(Ⅱ)的結(jié)果,能否認為樣本僅使用B的學生中本月支付金額大于2000元的人數(shù)有變化?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中ABCA1B1C1ABAC,AB3AC4,B1CAC1

1)求AA1的長;

2)試判斷在側(cè)棱BB1上是否存在點P,使得直線PC與平面AA1C1C所成角和二面角B—A1C—A的大小相等,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖(如圖①)、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖(如圖②),則下列結(jié)論中不一定正確的是( )

注:90后指1990年及以后出生,80后指1980~1989年之間出生,80前指1979年及以前出生.

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的20%

C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多

D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖已知,分別為的中點,將沿折起,得到四棱錐,的中點.

1)證明:平面

2)當正視圖方向與向量的方向相同時,的正視圖為直角三角形,求此時二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)討論上的零點個數(shù).

查看答案和解析>>

同步練習冊答案