9.已知函數(shù)f(x)=ax3+$\frac{1}{2}$x2在x=-1處取得極大值,記g(x)=$\frac{1}{f′(x)}$.程序框圖如圖所示,若輸出的結果S>$\frac{2014}{2015}$,則判斷框中可以填入的關于n的判斷條件是( 。
A.n≤2014?B.n≤2015?C.n>2014?D.n>2015?

分析 根據(jù)已知中的程序框圖可得,該程序的功能是計算并輸出變量S的值,模擬程序的運行過程,可得答案.

解答 解:函數(shù)f(x)=ax3+$\frac{1}{2}$x2,在x=-1處取得極大值,
即f′(x)=3ax2+x的零點為-1,
即 3a-a=0,解得:a=$\frac{1}{3}$,
故f′(x)=x2+x,
故g(x)=$\frac{1}{f′(x)}$=$\frac{1}{x}$-$\frac{1}{x+1}$,
則S=g(1)+g(2)+g(3)+…+g(k)=1-$\frac{1}{k+1}$=$\frac{k}{k+1}$,
若輸出的結果S>$\frac{2014}{2015}$,則k>2015,
故進行循環(huán)的條件應為n≤2015?,
故選:B.

點評 本題以程序框圖為載體,考查了函數(shù)在某點取得極值的條件,數(shù)列求和,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知tanα=-3,且α是第二象限的角.
(1)求cosα的值;
(2)求$\frac{4sinα-2cosα}{5cosα+3sinα}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.設復數(shù)z滿足i•(z-4)=3+2i(i是虛數(shù)單位),則z的實部為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.直線x+2y-1=0在y軸上的截距為( 。
A.-1B.$\frac{1}{2}$C.$-\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設函數(shù)f(x)=acos2x+(a-1)(cosx+1)其中a>0,記f(x)||的最大值為A.
(Ⅰ)當0<a<$\frac{1}{5}$時,討論f(x)的單調(diào)性;
(Ⅱ)求A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=3x-2mx2-3ln(x+1),其中m∈R
(1)若x=1是f(x)的極值點,求m的值;
(2)若0<m<$\frac{3}{4}$,求f(x)的單調(diào)區(qū)間;
(3)若f(x)在[0,+∞)上的最小值是0,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設x∈R,記不超過x的最大整數(shù)為[x],如[0.9]=0,[2.6]=2,令{x}=x-[x].則{$\frac{\sqrt{5}+1}{2}$},[$\frac{\sqrt{5}+1}{2}$],$\frac{\sqrt{5}+1}{2}$( 。
A.既是等差數(shù)列又是等比數(shù)列B.既不是等差數(shù)列也不是等比數(shù)列
C.是等差數(shù)列但不是等比數(shù)列D.是等比數(shù)列但不是等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知二次函數(shù)f(x)=ax2+x(a≠0).
(1)當a<0時,若函數(shù)$y=\sqrt{f(x)}$定義域與值域完全相同,求a的值;
(2)當a>0時,求函數(shù)g(x)=f(x)-2x-|x-a|的最小值h(a).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列每組函數(shù)是同一函數(shù)的是( 。
A.f(x)=x0與f(x)=1B.f(x)=$\sqrt{{x}^{2}}$-1與f(x)=|x|-1
C.f(x)=$\frac{{x}^{2}-4}{x+2}$與f(x)=x-2D.f(x)=$\sqrt{(x-1)(x-2)}$與f(x)=$\sqrt{x-1}$$\sqrt{x-2}$

查看答案和解析>>

同步練習冊答案