17.設f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{2n}$(n∈N),那么f(n+1)-f(n)等于$\frac{1}{4{n}^{2}+6n+2}$.

分析 根據(jù)題中所給式子,求出f(n+1)和f(n),再兩者相減,即得到f(n+1)-f(n)的結(jié)果.

解答 解:∵f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{2n}$,
∴f(n+1)=$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{2n}$+$\frac{1}{2n+1}$+$\frac{1}{2n+2}$,
∴f(n+1)-f(n)=$\frac{1}{2n+1}$+$\frac{1}{2n+2}$-$\frac{1}{n+1}$=$\frac{1}{2n+1}$-$\frac{1}{2n+2}$=$\frac{1}{4{n}^{2}+6n+2}$,
故答案為:$\frac{1}{4{n}^{2}+6n+2}$

點評 此題主要考查函數(shù)的值,根據(jù)已知中的函數(shù)解析式,直接代入即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.若α與β為△ABC的內(nèi)角,則“α=β”是“sinα=sinβ”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在1和256中間插入三個數(shù)a,b,c使這五個數(shù)成等比數(shù)列,則其公比q為( 。
A.±2B.2C.±4D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.等差數(shù)列{an}的前三項依次為 a-6,-3a-5,-10a-1,則a等于(  )
A.1B.-1C.$-\frac{1}{3}$D.$\frac{5}{11}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.敘述基本不等式的內(nèi)容,并用分析法加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.$\overrightarrow a$=(2,1,3),$\overrightarrow b$=(-1,2,1),若$\overrightarrow a⊥(\overrightarrow a-λ\overrightarrow b)$,則λ=(  )
A.-2B.$-\frac{14}{3}$C.$\frac{14}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.設f(x)是R上的奇函數(shù),g(x)是R上的偶函數(shù),并且f(x)-g(x)=x2-x,則f(x)的解析式是f(x)=-x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知數(shù)列{an}的前n項和為Sn,且a1=1,an+1=2Sn+1(n∈N*),在等差數(shù)列{bn}中,b2=5,且公差d=2.使得a1b1+a2b2+…+anbn>60n成立的最小正整數(shù)n為( 。
A.2B.3C.4D.5

查看答案和解析>>

同步練習冊答案