若直線ax-by+1=0平分圓C:x2+y2+2x-4y+1=0的周長,則ab的取值范圍是
 
考點:基本不等式,直線和圓的方程的應(yīng)用
專題:綜合題,不等式的解法及應(yīng)用,直線與圓
分析:依題意知直線ax-by+1=0過圓C的圓心(-1,2),故有a+2b=1,再利用ab=(1-2b)b=-2(b-
1
4
2+
1
8
,求得ab的取值范圍.
解答: 解:∵直線ax-by+1=0平分圓C:x2+y2+2x-4y+1=0的周長,
∴直線ax-by+1=0過圓C的圓心(-1,2),
∴有a+2b=1,
∴ab=(1-2b)b=-2(b-
1
4
2+
1
8
1
8
,
∴ab的取值范圍是(-∞,
1
8
]

故答案為:(-∞,
1
8
]
點評:本題主要考查直線和圓的位置關(guān)系,配方法的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)各項均為正數(shù)的數(shù)列{an}和{bn}滿足:an,bn,an+1成等差數(shù)列,bn,an+1,bn+1成等比數(shù)列,且a1=1,b1=2,a2=3,求通項an,bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式
3x2+2x+2
x2+x+1
≥m對于任意的實數(shù)x均成立,求自然數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠C=90°,側(cè)棱與底面所成的角為α(0°<α<90°),點B1在底面上的射影D落在BC上.
(1)求證:AC⊥平面BB1C1C;
(2)當(dāng)α為何值時,AB1⊥BC1,且使點D恰為BC中點?
(3)(理科做)當(dāng)α=arccos
1
3
,且AC=BC=AA1時,求二面角C1-AB-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a、b、x、y都是正數(shù),且x+y=a+b.求證:
a2
a+x
+
b2
b+y
a+b
2
.(用柯西不等式證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x+a
,若函數(shù)f(x)=2013x的圖象上存在點(x0,y0)使得f(f(y0))=y0,求a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為1的正方形ABCD沿對角線BD折成直二面角,則二面角B-AC-D的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓錐底面半徑為1,高為2,則圓錐的側(cè)面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在二面角α-l-β 的半平面α內(nèi),線段AB⊥l,垂足為B;在半平面β內(nèi),線段CD⊥l,垂足為D;M為l上任一點.若AB=2,CD=3,BD=1,則AM+CM的最小值為(  )
A、
26
B、
23
C、
21
D、
19

查看答案和解析>>

同步練習(xí)冊答案