【題目】中, 分別為內(nèi)角的對(duì)邊,且

(1)求角的大;

(2)若的值。

【答案】(1).

(2)

【解析】試題分析:(1)在已知的等式兩邊同時(shí)乘以a+b+c,變形后得到一個(gè)關(guān)系式,利用余弦定理表示出cosA,把得到的關(guān)系式代入即可求出cosA的值,由A的范圍,利用特殊角的三角函數(shù)值即可求出A的度數(shù);(2)根據(jù)正弦定理化簡已知的等式,然后由A+B+C=π,利用誘導(dǎo)公式及兩角和的正弦函數(shù)公式化簡,再利用同角三角函數(shù)間的基本關(guān)系化簡,把sinA,cosA的值代入即可求出tanB的值,然后再由同角三角函數(shù)間的基本關(guān)系求出sinB的值,由a,sinA及sinB的值,利用正弦定理即可求出b的值.

詳解:

(1)由題意,即

整理得:

由余弦定理知

(2)由正弦定理得:

所以

解得,

所以

由正弦定理得:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為 ,(t為參數(shù)),直線l2的參數(shù)方程為 ,(m為參數(shù)).設(shè)l1與l2的交點(diǎn)為P,當(dāng)k變化時(shí),P的軌跡為曲線C.
(Ⅰ)寫出C的普通方程;
(Ⅱ)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3:ρ(cosθ+sinθ)﹣ =0,M為l3與C的交點(diǎn),求M的極徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個(gè)零件,并測量其尺寸(單位:cm).根據(jù)長期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布N(μ,σ2).(12分)
(1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個(gè)零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件數(shù),求P(X≥1)及X的數(shù)學(xué)期望;
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查.
(ⅰ)試說明上述監(jiān)控生產(chǎn)過程方法的合理性;
(ⅱ)下面是檢驗(yàn)員在一天內(nèi)抽取的16個(gè)零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

經(jīng)計(jì)算得 = =9.97,s= = ≈0.212,其中xi為抽取的第i個(gè)零件的尺寸,i=1,2,…,16.
用樣本平均數(shù) 作為μ的估計(jì)值 ,用樣本標(biāo)準(zhǔn)差s作為σ的估計(jì)值 ,利用估計(jì)值判斷是否需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查?剔除( ﹣3 +3 )之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)μ和σ(精確到0.01).
附:若隨機(jī)變量Z服從正態(tài)分布N(μ,σ2),則P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592, ≈0.09.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解一個(gè)小水庫中養(yǎng)殖的魚有關(guān)情況,從這個(gè)水庫中多個(gè)不同位置捕撈出100條魚,稱得每條魚的質(zhì)量(單位:千克),并將所得數(shù)據(jù)分組,畫出頻率分布直方圖(如圖所示)

)在答題卡上的表格中填寫相應(yīng)的頻率;

)估計(jì)數(shù)據(jù)落在(1.15,1.30)中的概率為多少;

)將上面捕撈的100條魚分別作一記號(hào)后再放回水庫,幾天后再從水庫的多處不同位置捕撈出120條魚,其中帶有記號(hào)的魚有6條,請(qǐng)根據(jù)這一情況來估計(jì)該水庫中魚的總條數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),正數(shù)滿足,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=logaxa1)在[a,2a]上的最大值是最小值的2倍.

1)若函數(shù)gx=f3x2-mx+5)在區(qū)間[-1,+∞)上是增函數(shù),求實(shí)數(shù)m的取值范圍;

2)設(shè)函數(shù)Fx=f)(2x),且關(guān)于x的方程Fx=k[,4]上有解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓N:x2+(y+ 2=36,P是圓N上的點(diǎn),點(diǎn)Q在線段NP上,且有點(diǎn)D(0, )和DP上的點(diǎn)M,滿足 =2 , =0.
(1)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)Q的軌跡方程;
(2)若斜率為 的直線l與(1)中所求Q的軌跡交于不同兩點(diǎn)A、B,又點(diǎn)C( ,2),求△ABC面積最大值時(shí)對(duì)應(yīng)的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)市場調(diào)查,某種商品在進(jìn)價(jià)基礎(chǔ)上每漲價(jià)1元,其銷售量就減少10個(gè),已知這種商品進(jìn)價(jià)為40/個(gè),若按50元一個(gè)售出時(shí)能賣出500個(gè).

1)請(qǐng)寫出售價(jià)x)元與利潤y元之間的函數(shù)關(guān)系式;

2)試計(jì)算當(dāng)售價(jià)定為多少元時(shí),獲得的利潤最大,并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知橢圓C1+=1,C2+=1(a>b>0)有相同的離心率,F(xiàn)(﹣ , 0)為橢圓C2的左焦點(diǎn),過點(diǎn)F的直線l與C1、C2依次交于A、C、D、B四點(diǎn).
(1)求橢圓C2的方程;
(2)求證:無論直線l的傾斜角如何變化恒有|AC|=|DB|

查看答案和解析>>

同步練習(xí)冊(cè)答案