【題目】已知橢圓C: =1(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為 ,直線(xiàn)y=k(x﹣1)與橢圓C交于不同的兩點(diǎn) M,N.
(1)求橢圓C的方程,并求其焦點(diǎn)坐標(biāo);
(2)當(dāng)△AMN的面積為 時(shí),求k的值.
【答案】
(1)解:由題意可得:a=2, ,a2=b2+c2,聯(lián)立解得a=2,c=b= .
∴橢圓C的標(biāo)準(zhǔn)方程為: =1,其焦點(diǎn)坐標(biāo)為:
(2)解:設(shè)M(x1,y1),N(x2,y2),聯(lián)立 ,
化為:(1+2k2)x2﹣4k2x+2k2﹣4=0,
△>0,∴x1+x2= ,x1x2= .
∴|MN|=
= = .
點(diǎn)A到直線(xiàn)MN的距離d= .
∴△AMN的面積= = |MN|= ,
化為:20k4﹣7k2﹣13=0,
解得k2=1,解得k=±1
【解析】(1)由題意可得:a=2, ,a2=b2+c2 , 聯(lián)立解得即可得出.(2)設(shè)M(x1 , y1),N(x2 , y2),直線(xiàn)方程與橢圓方程聯(lián)立化為:(1+2k2)x2﹣4k2x+2k2﹣4=0,利用根與系數(shù)的關(guān)系可得|MN|= ,點(diǎn)A到直線(xiàn)MN的距離d.利用△AMN的面積= = |MN|,解出即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)y=sin(2x+ )的圖象向右平移 個(gè)最小正周期后,所得圖象對(duì)應(yīng)的函數(shù)為( )
A.y=sin(2x﹣ )
B.y=sin(2x﹣ )
C.y=sin(2x﹣ )
D.y=sin(2x+ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,A,B的坐標(biāo)分別為(-1,2),(4,3),AC的中點(diǎn)M在y軸上,BC的中點(diǎn)N在x軸上.
(1)求點(diǎn)C的坐標(biāo);
(2)求直線(xiàn)MN的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各對(duì)直線(xiàn)不互相垂直的是( )
A.l1的傾斜角為120°,l2過(guò)點(diǎn)P(1,0),Q(4, )
B.l1的斜率為- ,l2過(guò)點(diǎn)P(1,1),Q
C.l1的傾斜角為30°,l2過(guò)點(diǎn)P(3, ),Q(4,2 )
D.l1過(guò)點(diǎn)M(1,0),N(4,-5),l2過(guò)點(diǎn)P(-6,0),Q(-1,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)M(2,2),N(5,-2),點(diǎn)P在x軸上,分別求滿(mǎn)足下列條件的點(diǎn)P的坐標(biāo).
(1)∠MOP=∠OPN(O是坐標(biāo)原點(diǎn)).
(2)∠MPN是直角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若拋物線(xiàn)的頂點(diǎn)是雙曲線(xiàn)x2﹣y2=1的中心,焦點(diǎn)是雙曲線(xiàn)的右頂點(diǎn)
(1)求拋物線(xiàn)的標(biāo)準(zhǔn)方程;
(2)若直線(xiàn)l過(guò)點(diǎn)C(2,1)交拋物線(xiàn)于M,N兩點(diǎn),是否存在直線(xiàn)l,使得C恰為弦MN的中點(diǎn)?若存在,求出直線(xiàn)l方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= .
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若g(x)=xf(x)+mx在區(qū)間(0,e]上的最大值為﹣3,求m的值;
(3)若x≥1時(shí),有不等式f(x)≥ 恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位決定建造一批簡(jiǎn)易房(房型為長(zhǎng)方體狀,房高2.5米),前后墻用2.5米高的彩色鋼板,兩側(cè)用2.5米高的復(fù)合鋼板,兩種鋼板的價(jià)格都用長(zhǎng)度來(lái)計(jì)算(即:鋼板的高均為2.5米,用鋼板的長(zhǎng)度乘以單價(jià)就是這塊鋼板的價(jià)格),每米單價(jià):彩色鋼板為450元,復(fù)合鋼板為200元.房頂用其它材料建造,每平方米材料費(fèi)為200元.每套房材料費(fèi)控制在32000元以?xún)?nèi).
(1)設(shè)房前面墻的長(zhǎng)為x,兩側(cè)墻的長(zhǎng)為y,所用材料費(fèi)為p,試用x,y表示p;
(2)在材料費(fèi)的控制下簡(jiǎn)易房面積S的最大值是多少?并指出前面墻的長(zhǎng)度x應(yīng)為多少米時(shí)S最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax3+bx2﹣3x在x=±1處取得極值
(1)求函數(shù)f(x)的解析式;
(2)求證:對(duì)于區(qū)間[﹣1,1]上任意兩個(gè)自變量的值x1 , x2 , 都有|f(x1)﹣f(x2)|≤4;
(3)若過(guò)點(diǎn)A(1,m)(m≠﹣2)可作曲線(xiàn)y=f(x)的三條切線(xiàn),求實(shí)數(shù)m的范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com