已知函數(shù)f(x)=(x-1)-alnx
(1)討論函數(shù)f(x)的單調區(qū)間和極值;
(2)若f(x)≥0對x∈[1,+∞)上恒成立,求實數(shù)a的取值范圍.

解:(1)(x>0)(1分)
當a≤0時,f'(x)>0,在(0,+∞)上為增函數(shù),無極值 (2分)
當a>0時,,(0,a)上為減函數(shù),在(a,+∞)上為增函數(shù) (2分)
有極小值f(a)=(a-1)-alna,無極大值(1分)
(2)
當a≤1時,f'(x)≥0在[1,+∞)上恒成立,則f(x)是單調遞增的,
則f(x)≥f(1)=0恒成立,則a≤1(13分)
當a>1時,在(1,a)上單調遞減,在(a,+∞)上單調遞增,所以x∈(1,a)時,f(x)≤f(1)=0這與f(x)≥0恒成立矛盾,故不成立(3分)
綜上:a≤1
分析:(1)正確求得函數(shù)的導函數(shù)是關鍵,再求得導函數(shù)后,利用f'(x)>0,解自變量的取值范圍時要對參數(shù)a進行討論,很明顯由以及x>0,可分a≤0和a>0來討論得解.
(2)由f(x)≥0對x∈[1,+∞)上恒成立可分a≤1和a>1來討論轉化為函數(shù)的最小值大于等于0的問題來求解.
點評:本題考查函數(shù)的導數(shù)以及利用到輸球函數(shù)的單調區(qū)間和極值問題;考查了利用函數(shù)的導數(shù)討論含參數(shù)不等式的恒成立問題,求參數(shù)的取值范圍,主要轉化為函數(shù)的最值問題利用導數(shù)這一工具來求解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調,求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項和為Sn,則S2010的值為(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案