【題目】給出下列六個(gè)命題:
(1)若,則函數(shù)的圖像關(guān)于直線對稱.
(2)與的圖像關(guān)于直線對稱.
(3)的反函數(shù)與是相同的函數(shù).
(4)無最大值也無最小值.
(5)的最小正周期為.
(6)有對稱軸兩條,對稱中心有三個(gè).
則正確命題的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【答案】A
【解析】
根據(jù)函數(shù)解析式及對稱性可判斷(1)(2)(3).根據(jù)解析式可判斷(4)的最值情況.將(5)化簡可求得最小正周期.根據(jù)正弦函數(shù)的圖像與性質(zhì)可判斷(6).
對于(1),若,則函數(shù)的圖像關(guān)于直線對稱,所以(1)錯(cuò)誤;
對于(2),若函數(shù),則;而.兩個(gè)函數(shù)的圖像沒有關(guān)于對稱,所以(2)錯(cuò)誤;
對于(3),若函數(shù),則,其反函數(shù)為,與是不同的函數(shù),所以(3)錯(cuò)誤;
對于(4),為偶函數(shù),且當(dāng)時(shí)為遞減函數(shù).因而當(dāng)時(shí),函數(shù)有最大值,因而(4)錯(cuò)誤;
對于(5), ,因而最小正周期為,所以(5)錯(cuò)誤;
對于(6),由正弦函數(shù)的圖像可知,在內(nèi),函數(shù)有對稱軸兩條,分別為;對稱中心有三個(gè),分別為,所以(6)正確.
綜上可知,正確的為(6)
故選:A
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的定義域?yàn)?/span>恰是不等式的解集,其值域?yàn)?/span>,函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>.
(1)求函數(shù)定義域?yàn)?/span>和值域;
(2)是否存在負(fù)實(shí)數(shù),使得成立?若存在,求負(fù)實(shí)數(shù)的取值范圍;若不存在,請說明理由;
(3)若函數(shù)在定義域上單調(diào)遞減,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線系(),則下列命題中是真命題的個(gè)數(shù)是( 。
①存在一個(gè)圓與所有直線相交;
②存在一個(gè)圓與所有直線不相交;
③存在一個(gè)圓與所有直線相切;
④中所有直線均經(jīng)過一個(gè)定點(diǎn);
⑤不存在定點(diǎn)不在中的任一條直線上;
⑥對于任意整數(shù),存在正邊形,其所有邊均在中的直線上;
⑦中的直線所能圍成的正三角形面積都相等.
A.3B.4C.5D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角中,,,點(diǎn)在線段上.
(Ⅰ) 若,求的長;
(Ⅱ)若點(diǎn)在線段上,且,問:當(dāng)取何值時(shí),的面積最?并求出面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,焦距為.斜率為k的直線l與橢圓M有兩個(gè)不同的交點(diǎn)A,B.
(Ⅰ)求橢圓M的方程;
(Ⅱ)若,求 的最大值;
(Ⅲ)設(shè),直線PA與橢圓M的另一個(gè)交點(diǎn)為C,直線PB與橢圓M的另一個(gè)交點(diǎn)為D.若C,D和點(diǎn) 共線,求k.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解本校文、理科學(xué)生的學(xué)業(yè)水平模擬測試數(shù)學(xué)成績情況,分別從理科班學(xué)生中隨機(jī)抽取人的成績得到樣本甲,從文科班學(xué)生中隨機(jī)抽取人的成績得到樣本乙,根據(jù)兩個(gè)樣本數(shù)據(jù)分別得到如下直方圖:
甲樣本數(shù)據(jù)直方圖
乙樣本數(shù)據(jù)直方圖
已知乙樣本中數(shù)據(jù)在的有個(gè).
(1)求和乙樣本直方圖中的值;
(2)試估計(jì)該校理科班學(xué)生本次模擬測試數(shù)學(xué)成績的平均值和文科班學(xué)生本次模擬測試數(shù)學(xué)成績的中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間中點(diǎn)值為代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù).
(1)求的單調(diào)區(qū)間;
(2)在函數(shù)的圖象上取兩個(gè)不同的點(diǎn),令直線AB的斜率
為k,則在函數(shù)的圖象上是否存在點(diǎn),且,使得?若存
在,求A,B兩點(diǎn)的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)試判斷函數(shù)的單調(diào)性;
(2)若函數(shù)在上有且僅有一個(gè)零點(diǎn),
①求證:此零點(diǎn)是的極值點(diǎn);
②求證:.
(本題可能會(huì)用到的數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知項(xiàng)數(shù)為的數(shù)列滿足如下條件:①;②.若數(shù)列滿足,其中,則稱為的“伴隨數(shù)列”.
(1)數(shù)列1,3,5,7,9是否存在“伴隨數(shù)列”,若存在,寫出其“伴隨數(shù)列”;若不存在,請說明理由;
(2)若為的“伴隨數(shù)列”,證明:;
(3)已知數(shù)列存在“伴隨數(shù)列”,且,,求m的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com