命題p:x∈R且滿足sin2x=1.命題q:x∈R且滿足tanx=1.則p是q的( 。
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、既不充分也不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡(jiǎn)易邏輯
分析:根據(jù)三角函數(shù)的性質(zhì)以及充分條件和必要條件的定義進(jìn)行判斷.
解答: 解:由sin2x=1得2x=
π
2
+2kπ,k∈Z,
即x=
π
4
+kπ
,k∈Z,
由tanx=1,得x=
π
4
+kπ
,k∈Z,
∴p是q的充要條件.
故選:C.
點(diǎn)評(píng):本題主要考查充分條件和必要條件的應(yīng)用,利用三角函數(shù)的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
3
2
,長(zhǎng)軸長(zhǎng)為4
5
,直線l:y=x+m交橢圓于不同的兩點(diǎn)A,B.
(1)求橢圓的方程;
(2)求m的取值范圍;
(3)若直線l不經(jīng)過橢圓上的點(diǎn)M(4,1),求證:直線MA,MB的斜率互為相反數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[-2,3]上任取一個(gè)數(shù)a,則函數(shù)f(x)=
1
3
x3-ax2+(a+2)x有極值的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的焦點(diǎn)為F1、F2,漸近線為l1,l2,過點(diǎn)F2且與l1平行的直線交l2于M,若M在以線段F1 F2為直徑的圓上,則雙曲線的離心率為(  )
A、2
B、
2
C、
3
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)在時(shí)間間隔T內(nèi)的任何時(shí)刻,兩條不相關(guān)的短信機(jī)會(huì)均等地進(jìn)入同一臺(tái)手機(jī).若這兩條短信進(jìn)入手機(jī)的間隔時(shí)間不大于t(0<t<T)稱手機(jī)受到干擾,則手機(jī)受到干擾的概率是( 。
A、(
t
T
2
B、(1-
t
T
2
C、1-(
t
T
2
D、1-(1-
t
T
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
kx+1, x≤0
log2x, x>0
下列是關(guān)于函數(shù)y=f[f(x)]+1的零點(diǎn)個(gè)數(shù)的4個(gè)判斷:
①當(dāng)k>0時(shí),有3個(gè)零點(diǎn);
②當(dāng)k<0時(shí),有2個(gè)零點(diǎn);
③當(dāng)k>0時(shí),有4個(gè)零點(diǎn);
④當(dāng)k<0時(shí),有1個(gè)零點(diǎn).
則正確的判斷是( 。
A、①④B、②③C、①②D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是( 。
A、直角坐標(biāo)系中橫、縱坐標(biāo)相等的點(diǎn)能夠組成一個(gè)集合
B、π∈{x|x<3,x∈R}
C、∅={0}
D、{(1,2)}⊆{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
(1)實(shí)數(shù)的共軛復(fù)數(shù)一定是實(shí)數(shù);
(2)滿足|z-i|+|z+i|=2的復(fù)數(shù)z在復(fù)平面上對(duì)應(yīng)的點(diǎn)的軌跡是橢圓;
(3)若m∈Z,i2=-1,則im+im+1+im+2+im+3=0;
(4)0>-i.
其中正確命題的序號(hào)是( 。
A、(1)
B、(1)(3)
C、(2)(3)
D、(1)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
(x+a)2+(y+b)2>1,a,b∈{1,-1}
x≥-1
y≤1
表示的平面區(qū)域的面積等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案