若橢圓的離心率為,焦點(diǎn)在軸上,且長軸長為10,曲線上的點(diǎn)與橢圓的兩個焦點(diǎn)的距離之差的絕對值等于4.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求曲線的方程。
(1) ;(2) 。
【解析】
試題分析:(1)因?yàn)闄E圓的焦點(diǎn)在x軸上,所以設(shè)橢圓方程為,因?yàn)闄E圓的離心率為,且長軸長為10,所以,又,所以 所以橢圓的標(biāo)準(zhǔn)方程為。
(2)因?yàn)榍上的點(diǎn)與橢圓的兩個焦點(diǎn)的距離之差的絕對值等于4,所以曲線為焦點(diǎn)在x軸上的雙曲線,設(shè)曲線為,則焦距為6,,所以,
所以曲線的方程為。
考點(diǎn):本題考查橢圓的標(biāo)準(zhǔn)方程;雙曲線的標(biāo)準(zhǔn)方程;橢圓的簡單性質(zhì);雙曲線的簡單性質(zhì)。
點(diǎn)評:本題考查橢圓、雙曲線的性質(zhì)和應(yīng)用,解題時要注意公式的靈活運(yùn)用,注意區(qū)分橢圓和雙曲線的性質(zhì)以及標(biāo)準(zhǔn)方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:廣東省揭陽市2007年高中畢業(yè)班第一次高考模擬考試題(文科) 題型:044
如圖,在直角坐標(biāo)系xOy中,已知橢圓的離心率e=,
左右兩個焦分別為F1、F2.過右焦點(diǎn)F2且與x軸垂直的直線與橢圓C相交M、N兩點(diǎn),且|MN|=2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的一個頂點(diǎn)為B(0,-b),是否存在直線l:y=x+m,使點(diǎn)B關(guān)于直線l的對稱點(diǎn)落在橢圓C上,若存在,求出直線l的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆北京市東城區(qū)高三12月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓的離心率為,橢圓短軸的一個端點(diǎn)與兩個焦
(Ⅰ)求橢圓的方程;
(Ⅱ)已知動直線與橢圓相交于、兩點(diǎn). ①若線段中點(diǎn)的
橫坐標(biāo)為,求斜率的值;②若點(diǎn),求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的離心率為,橢圓短軸的一個端點(diǎn)與兩個焦
點(diǎn)構(gòu)成的三角形的面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知動直線與橢圓相交于、兩點(diǎn). ①若線段中點(diǎn)的
橫坐標(biāo)為,求斜率的值;②若點(diǎn),求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年寧夏石嘴山市平羅中學(xué)高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com