已知向量,向量,函數(shù).

(1)求的最小正周期

(2)已知分別為內(nèi)角的對(duì)邊,為銳角,,且恰是上的最大值,求.

 

【答案】

(1);(2)

【解析】

試題分析:(1)首先根據(jù)向量和的坐標(biāo)運(yùn)算和向量數(shù)量積的坐標(biāo)表示將函數(shù)的解析式化為

的形式,再利用的關(guān)系求周期;(2)先根據(jù)確定的取值范圍,再結(jié)合的圖像求出的范圍,進(jìn)而求上的最大值即,進(jìn)而確定,此時(shí)三角形知道兩邊和其中一邊的對(duì)角,利用余弦定理列關(guān)于的方程,解之即可.

試題解析:(1),

(2)由(1)知:,時(shí),

當(dāng)時(shí)取得最大值,此時(shí).

由余弦定理,得, ∴.

考點(diǎn):1、向量的線性運(yùn)算和數(shù)量積運(yùn)算;2、型函數(shù)的值域;3、余弦定理.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

  已知向量,向量,函數(shù)的最小正周期為,其中

(Ⅰ)求的值;

(Ⅱ)求當(dāng)時(shí)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北省高三12月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知向量,向量,函數(shù).

(1)求的最小正周期;

(2)已知分別為內(nèi)角的對(duì)邊,為銳角,,且恰是上的最大值,求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濰坊市奎文一中高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

給出以下五個(gè)命題:
①命題“?x∈R,x2+x+1>0”的否定是:“?x∈R,x2+x+1<0”.
②已知函數(shù)f(x)=k•cosx的圖象經(jīng)過點(diǎn)P(,1),則函數(shù)圖象上過點(diǎn)P的切線斜率等于
③a=1是直線y=ax+1和直線y=(a-2)x-1垂直的充要條件.
④函數(shù)在區(qū)間(0,1)上存在零點(diǎn).
⑤已知向量與向量的夾角為銳角,那么實(shí)數(shù)m的取值范圍是(
其中正確命題的序號(hào)是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013學(xué)年安徽省蕪湖市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:填空題

給出以下五個(gè)命題:
①命題“?x∈R,x2+x+1>0”的否定是:“?x∈R,x2+x+1<0”.
②已知函數(shù)f(x)=k•cosx的圖象經(jīng)過點(diǎn)P(,1),則函數(shù)圖象上過點(diǎn)P的切線斜率等于
③a=1是直線y=ax+1和直線y=(a-2)x-1垂直的充要條件.
④函數(shù)在區(qū)間(0,1)上存在零點(diǎn).
⑤已知向量與向量的夾角為銳角,那么實(shí)數(shù)m的取值范圍是(
其中正確命題的序號(hào)是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濰坊市高三2月月考理科數(shù)學(xué) 題型:解答題

(本小題滿分12分)

已知向量,向量,函數(shù).

(Ⅰ)求的最小正周期

(Ⅱ)已知,,分別為內(nèi)角,,的對(duì)邊,為銳角,,且

恰是, 上的最大值,求,的面積.

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案